首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.  相似文献   

2.
Do nitric oxide donors mimic endogenous NO-related response in plants?   总被引:1,自引:0,他引:1  
Huge advances achieved recently in elucidating the role of NO in plants have been made possible by the application of NO donors. However, the application of NO to plants in various forms and doses should be subjected to detailed verification criteria. Not all metabolic responses induced by NO donors are reliable and reproducible in other experimental designs. The aim of the presented studies was to investigate the half-life of the most frequently applied donors (SNP, SNAP and GSNO), the rate of NO release under the influence of light and reducing agents. At a comparable donor concentration (500 μM) and under light conditions the highest rate of NO generation was found for SNAP, followed by GSNO and SNP. The measured half-life of the donor in the solution was 3 h for SNAP, 7 h for GSNO and 12 h for SNP. A temporary lack of light inhibited NO release from SNP, both in the solution and SNP-treated leaf tissue, which was measured by the electrochemical method. Also a NO, selective fluorescence indicator DAF-2DA in leaves supplied with different donors showed green fluorescence spots in the epidermal cells mainly in the light. SNP as a NO donor was the most photosensitive. The activity of PAL, which plays an important role in plant defence, was also activated by SNP in the light, not in the dark. S-nitrosothiols (SNAP and GSNO) also underwent photodegradation, although to a lesser degree than SNP. Additionally, NO generation capacity from S-nitrosothiols was shown in the presence of reducing agents, i.e. ascorbic acid and GSH, and the absence of light. The authors of this paper would like to polemicize with the commonly cited statement that “donors are compounds that spontaneously break down to release NO” and wish to point out the fact that the process of donor decomposition depends on the numerous external factors. It may be additionally stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects and monitor the amount of NO released by the donor.  相似文献   

3.
Regulation of aldose reductase (AR), a member of the aldo-keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(beta-D-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37 degrees C led to approximately 71% decrease in the enzyme activity with DL-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).  相似文献   

4.
Abstract: We have recently demonstrated that nitric oxide (NO) donors can trigger either apoptosis or necrosis of neurons as a function of the intensity of the exposure. Here, we show that the apoptosis induced by the NO donors S -nitrosocysteine (SNOC) or S -nitroso- N -acetylpenicillamine (SNAP) in cultured cerebellar granule cells (CGCs) depends on NMDA receptor (NMDA-R) activation leading to intracellular Ca2+ overload. Early dissolution of actin filaments followed by breakdown of microtubules and nuclear lamins preceded the appearance of typical apoptotic features. NO donors induced tyrosine nitration in neurons, in a small population of contaminating astrocytes, and in cultures of cerebellar astroglial cells. However, astrocytes neither displayed cytoskeletal alterations nor underwent apoptosis. Competitive and uncompetitive NMDA receptor antagonists, such as d -aminophosphonovaleric acid and MK-801, did not influence tyrosine nitration but prevented the accumulation of intracellular Ca2+, cytoskeletal breakdown, and apoptosis induced by either SNOC or SNAP in CGCs. Taken together, these data strongly suggest that Ca2+ influx through NMDA-R-gated ion channels is a critical event in CGC apoptosis induced by NO donors.  相似文献   

5.
Nitric oxide (NO) has been reported to modulate the vascular endothelial growth factor (VEGF) gene by accumulating hypoxia-inducible factor-1alpha (HIF-1alpha) protein, but there is a contradiction among effects of various NO donors. The effects of NO donors including S-nitroso-N-acetyl-penicillamine (SNAP), S-nitroso-glutathione (GSNO), 1-hydroxy-2-oxo-3,3-bis(2-aminoethyl)-1-triazene (NOC18), 3-[(+/-)-(E)-ethyl-2(')-[(E)-hydroxyimino]-5-nitro-3-hexenecarbamoyl]-pyridine (NOR4), 3-morpholinosydnonimine (SIN-1), and nitroprusside (SNP) on the VEGF reporter gene were examined. SNAP, GSNO, NOC18, and NOR4 enhanced the VEGF reporter activity under normoxia and modulated the hypoxic induction. In contrast, SNP had only an inhibitory effect. An NO scavenger attenuated the reporter activation by NO donors except NOR4, but did not ameliorate the inhibitory effect of SNP. A reducing compound dithiothreitol suppressed NO-induced activation of the VEGF reporter gene. SNAP, GSNO, and NOC18 induced the accumulation of HIF-1alpha protein, while others did not. These results suggest that SNAP, GSNO, and NOC compounds are suitable for pharmacological studies in HIF-1-mediated VEGF gene activation by NO.  相似文献   

6.
Regulation of aldose reductase (AR), a member of the aldo–keto reductase superfamily, by nitric oxide (NO) donors was examined. Incubation of human recombinant AR with S-nitrosoglutathione (GSNO) led to inactivation of the enzyme and the formation of an AR-glutathione adduct. In contrast, incubation with S-nitroso-N-acetyl penicillamine (SNAP) or N-(β-d-glucopyranosyl)-SNAP (GlycoSNAP) led to an increase in enzyme activity which was accompanied by the direct nitrosation of the enzyme and the formation of a mixed disulfide with the NO-donor. To examine in vivo modification, red blood cells (RBC) and rat aortic vascular smooth muscle cells (VSMC) were incubated with 1 mM GSNO or SNAP. Exposure of VSMC to SNAP and GSNO for 2 h at 37°C led to ∼71% decrease in the enzyme activity with dl-glyceraldehyde as the substrate. Similarly, exposure of RBC in 5 mM glucose to NO-donors for 30 min at room temperature, followed by increasing the glucose concentration to 40 mM, resulted in >75% decrease in the formation of sorbitol. These investigations indicate that NO and/or its bioactive metabolites can regulate cellular AR, leading to either activation (by nitrosation) or inactivation (by S-thiolation).  相似文献   

7.
腹膜淋巴孔与淋巴转归NO-cGMP-Ca2+信号转导途径研究   总被引:2,自引:0,他引:2  
Li YY  Li JC 《生理学报》2005,57(1):45-53
为研究一氧化氮(nitric oxide,NO)调节大鼠腹膜淋巴孔和淋巴吸收的细胞内信号转导机制,在体外培养的间皮细胞上,利用cGMP检测试剂盒和激光共聚焦扫描显微镜,研究NO对间皮细胞内cGMP和游离钙离子浓度(Ca^2 )的影响;并利用动物实验研究NO-cGMP-Ca^2 通路对大鼠腹膜淋巴孔和淋巴吸收的影响。结果发现:(1)与对照组相比,NO供体Sper NO (spermine/nitric oxide complex)可以剂量依赖性地升高间皮细胞内cGMP的浓度(P<0.01)。此作用可被可溶性鸟苷酸环化酶(soluble guanylyl cyclase,sGC)特异性抑制剂1H-[1,2,4]噁二唑[4.3-a]喹喔啉-1-one酮(1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one,ODQ)阻断(P<0.05,P<0.01)。Sper/NO可使间皮细胞内[Ca^2 ],相对水平降低(P<0.05),但此效应可被ODQ阻断;L-型电压依赖性钙通道阻滞剂nifedipine,可使细胞内的[Ca^2 ];在短时间内迅速明显下降(P<0.05),达平衡后再加入Sper/NO并不能引起[Ca^2 ];的进一步改变(P>0.05);(2)NO可以剂量依赖性地提高大鼠膈组织淋巴孔最大分布面积(P<0.01)和对示踪剂的吸收量(P<0.05),ODQ可明显抑制NO引起的淋巴孔和淋巴吸收的改变(P<0.01)。该结果首次发现nifedipine能显著增加淋巴孔最大分布面积(P<0.01)及膈组织对台盼蓝的吸收量(P<O.05),而且nifedipine预处理后Sper/NO并不能使淋巴孔的淋巴吸收进一步升高(P>0.05)。结果提示,NO可以通过降低cGMP水平降低大鼠腹膜间皮[Ca^2 ],且此过程和L-型电压依赖性钙通道有关;NO可通过NO-cGMP-[Ca^2 ],通路,促进淋巴孔的开放和吸收。  相似文献   

8.
The efficacy of nitric oxide (NO) treatment in ischemic stroke, though well recognized, is yet to be tested in clinic. NO donors used to treat ischemic injury are structurally diverse compounds. We have shown that treatment of S-nitrosoglutathione (GSNO) protects the brain against injury and inflammation in rats after experimental stroke [M. Khan, B. Sekhon, S. Giri, M. Jatana, A. G. Gilg, K. Ayasolla, C. Elango, A. K. Singh, I. Singh, S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke, J. Cereb. Blood Flow Metab. 25 (2005) 177-192.]. In this study, we tested structurally different NO donors including GSNO, S-nitroso-N-acetyl-penicillamine (SNAP), sodium nitroprusside (SNP), methylamine hexamethylene methylamine NONOate (MAHMA), propylamine propylamine NONOate (PAPA), 3-morpholinosydnonimine (SIN-1) and compared their neuroprotective efficacy and antioxidant property in rats after ischemia/reperfusion (I/R). GSNO, in addition to neuroprotection, decreased nitrotyrosine formation and lipid peroxidation in blood and increased the ratio of reduced versus oxidized glutathione (GSH/GSSG) in brain as compared to untreated animals. GSNO also prevented the I/R-induced increase in mRNA expression of ICAM-1 and E-Selectin. SNAP and SNP extended limited neuroprotection, reduced nitrotyrosine formation in blood and blocked increase in mRNA expression of ICAM-1 and E-Selectin in brain tissue. PAPA, MAHMA, and SIN-1 neither protected the brain nor reduced oxidative stress. We conclude that neuroprotective action of NO donors in experimental stroke depends on their ability to reduce oxidative stress both in brain and blood.  相似文献   

9.
Abstract: NMDA has two beneficial effects on primary neuronal cultures of cerebellar granule cells (CGCs) established from 10-day-old rat pups. First, NMDA is neurotrophic and will enhance survival of CGCs in culture in the absence of ethanol. Second, ethanol exposure will induce cell death in CGC cultures, and NMDA can lessen this ethanol-induced cell loss, i.e., NMDA is neuroprotective. Because NMDA can stimulate production of nitric oxide (NO), which can in turn enhance synthesis of cyclic GMP, this study tested the hypothesis that the NO-cyclic GMP pathway is essential for NMDA-mediated neurotrophism and neuroprotection. Inhibiting the synthesis of NO with N G-nitro- l -arginine methyl ester eliminated both the NMDA-mediated neurotrophic and neuroprotective effects. Similarly, inhibiting production of cyclic GMP with the agent LY83583 also abolished these effects. The NO generator 2,2'-(hydroxynitrosohydrazono)bisethanamine produced neurotrophic and neuroprotective effects that were similar to those induced by NMDA. Also, 8-bromo-cyclic GMP produced neurotrophic and neuroprotective effects that were quite similar to the effects produced by NMDA. In conclusion, NMDA enhances survival of cerebellar granule cells and protects the cells against ethanol-induced cell death by a mechanism(s) that involves the NO-cyclic GMP pathway.  相似文献   

10.
We exposed adherent neutrophils to the nitric oxide (NO)-radical donors S-nitroso-N-acetylpenicillamine (SNAP), S-nitrosoglutathione (GSNO), and sodium nitroprusside (SNP) to study the role of NO in morphology and Ca(2+) signaling. Parallel to video imaging of cell morphology and migration in neutrophils, changes in intracellular free Ca(2+) ([Ca(2+)](i)) were assessed by ratio imaging of Fura-2. NO induced a rapid and persistent morphological hyperpolarization followed by migrational arrest that usually lasted throughout the 10-min experiments. Addition of 0.5-800 microM SNAP caused concentration-dependent elevation of [Ca(2+)](i) with an optimal effect at 50 microM. This was probably induced by NO itself, because no change in [Ca(2+)](i) was observed after treatment with NO donor byproducts, i.e. D-penicillamine, glutathione, or potassium cyanide. Increasing doses of SNAP (>/=200 microM) attenuated the Ca(2+) response to the soluble chemotactic stimulus formyl-methionyl-leucyl-phenylalanine (fMLP), and both NO- and fMLP-induced Ca(2+) transients were abolished at 800 microM SNAP or more. In kinetic studies of fluorescently labeled actin cytoskeleton, NO markedly reduced the F-actin content and profoundly increased cell area. Immunoblotting to investigate the formation of nitrotyrosine residues in cells exposed to NO donors did not imply nitrosylation, nor could we mimic the effects of NO with the cell permeant form of cGMP, i.e., 8-Br-cGMP. Hence these processes were probably not the principal NO targets. In summary, NO donors initially increased neutrophil morphological alterations, presumably due to an increase in [Ca(2+)](i), and thereafter inhibited such shape changes. Our observations demonstrate that the effects of NO donors are important for regulation of cellular signaling, i.e., Ca(2+) homeostasis, and also affect cell migration, e.g., through effects on F-actin turnover. Our results are discussed in relation to the complex mechanisms that govern basic cell shape changes, required for migration.  相似文献   

11.
There is increasing evidence that endogenous nitric oxide (NO) influences adipogenesis, lipolysis and insulin-stimulated glucose uptake. We investigated the effect of NO released from S-nitrosoglutathione (GSNO) and S-nitroso N-acetylpenicillamine (SNAP) on basal and insulin-stimulated glucose uptake in adipocytes of normoglycaemic and streptozotocin (STZ)-induced diabetic rats. GSNO and SNAP at 0.2, 0.5, and 1 mM brought about a concentration-dependent increase in basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes of normoglycaemic and STZ-induced diabetic rats. SNAP at 1.0 mM significantly elevated basal 2-deoxyglucose uptake (115.8 ± 10.4%) compared with GSNO at the same concentration (116.1 ± 9.4%;P 0.05) in STZ-induced diabetic rats. Conversely, SNAP at concentrations of 10 mM and 20 mM significantly decreased basal 2-deoxyglucose uptake by 50.0 ± 4.5% and 61.5 ± 7.2% respectively in adipocytes of STZ-induced diabetic rats (P 0.05). GSNO at concentrations of 10 mM and 20 mM also significantly decreased basal 2-deoxyglucose uptake by 50.8 ± 6.4% and 55.2 ± 7.8% respectively in adipocytes of STZ-induced diabetic rats (P 0.05). These observations indicate that NO released from GSNO and SNAP at 1 mM or less stimulates basal and insulin-stimulated glucose uptake, and at concentrations of 10 mM and 20 mM inhibits basal glucose uptake. The additive effect of GSNO or SNAP, and insulin observed in this study could be due to different mechanisms and warrants further investigation.  相似文献   

12.
The glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulated a rapid, extracellular Ca(2+)-dependent conversion of [3H]arginine to [3H]citrulline in primary cultures of cerebellar granule cells, indicating receptor-mediated activation of nitric oxide (NO) synthase. The NMDA-induced formation of [3H]citrulline reached a plateau within 10 min. Subsequent addition of unlabeled L-arginine resulted in the disappearance of 3H from the citrulline pool, indicating a persistent activation of NO synthase after NMDA receptor stimulation. Glutamate, NMDA, and kainate, but not quisqualate, stimulated both the conversion of [3H]arginine to [3H]citrulline and cyclic GMP accumulation in a dose-dependent manner. Glutamate and NMDA showed similar potencies for the stimulation of [3H]citrulline formation and cyclic GMP synthesis, respectively, whereas kainate was more potent at inducing cyclic GMP accumulation than at stimulating [3H]citrulline formation. Both the [3H]arginine to [3H]citrulline conversion and cyclic GMP synthesis stimulated by NMDA were inhibited by the NMDA receptor antagonist MK-801 and by the inhibitors of NO synthase, NG-monomethyl-L-arginine (MeArg) and NG-nitro-L-arginine (NOArg). However, MeArg, in contrast to NOArg, also potently inhibited [3H]arginine uptake. Kainate (300 microM) stimulated 45Ca2+ influx to the same extent as 100 microM NMDA, but stimulated [3H]citrulline formation to a much lesser extent, which suggests that NO synthase is localized in subcellular compartments where the Ca2+ concentration is regulated mainly by the NMDA receptor.  相似文献   

13.
We analyzed the effect of nitric oxide (NO) on oxygen-dependent cytotoxic responses mediated by neutrophils against unopsonized erythrocytes using three NO donors: S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine (SNAP), and sodium nitroprusside (SNP). Neutrophils were treated with these compounds for 1-2 min at 37 degrees C and cytotoxicity was then triggered in the presence of NO donors by precipitating immune complexes, aggregated IgG, the chemotactic peptide FMLP, or opsonized zymosan. GSNO induced, in all cases, a marked increase in cytotoxic responses, while SNAP moderately increased cytotoxicity triggered by immune complexes, aggregated IgG, or Z, opsonized zymosen, without modifying those responses induced by FMLP. By contrast, SNP dramatically suppressed cytotoxicity triggered by all of the stimuli assessed. The enhancing effects mediated by GSNO and SNAP did not depend on the stimulation of guanylyl cyclase and were prevented by the NO scavengers hemoglobin and PTIO (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide). The inhibitory activity of SNP, on the other hand, was not prevented by NO scavengers, suggesting that it cannot be ascribed to the release of NO. In another set of experiments, neutrophils were pretreated with GSNO or SNAP for different times. Then cells were washed to remove NO donors from the culture medium, and cytotoxicity was triggered by different stimuli. It was found that neutrophils must be pretreated with NO donors for at least 4 h to increase cytotoxic responses, and pretreatment for longer periods (i.e., 8 or 18 h) further increased cytotoxicity. Not only cytotoxic responses, but also the production of O2- and H2O2, and the release of myeloperoxidase were increased under these conditions.  相似文献   

14.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

15.
In vitro microdialysis was used to investigate the mechanism of nitric oxide (NO) donor-induced changes in dopamine (DA) secretion from PC12 cells. Infusion of the NO-donor S-nitroso-N-acetylpenicillamine (SNAP, 1.0 mm) induced a long-lasting increase in DA and 3-methoxytyramine (3-MT) dialysate concentrations. SNAP-induced increases were inhibited either by pre-infusion of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazolo[4,3]quinoxalin-1-one (ODQ, 0.1 mm) or by Ca2+ omission. Ca2+ re-introduction restored SNAP effects. SNAP-induced increases in DA + 3-MT were unaffected by co-infusion of the l-type Ca2+ channel inhibitor nifedipine. The NO-donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3, 1.0 mm) induced a short-lasting decrease in dialysate DA + 3-MT. Ascorbic acid (0.2 mm) co-infusion allowed NOR-3 to increase dialysate DA + 3-MT. ODQ pre-infusion inhibited NOR-3 + ascorbic acid-induced DA + 3-MT increases. Infusion of high K+ (75 mm) induced a 2.5-fold increase in dialysate DA + 3-MT. The increase was abolished by NOR-3 co-infusion. Conversely, co-infusion of ascorbic acid (0.2 mm) with NOR-3 + high K+ restored high K+ effects. Co-infusion of nifedipine inhibited high K+-induced DA + 3-MT increases. These results suggest that activation of the NO/sGC/cyclic GMP pathway may be the underlying mechanism of extracellular Ca2+-dependent effects of exogenous NO on DA secretion from PC12 cells. Extracellular Ca2+ entry may occur through nifedipine-insensitive channels. NO effects and DA concentrations in dialysates largely depend on both the timing of NO generation and the extracellular environment in which NO is generated.  相似文献   

16.
Angiogenesis is a complex process involving endothelial cell migration, proliferation, invasion, and tube formation. Inhibition of these processes might have implications in various angiogenesis‐mediated disorders. Because nitric oxide (NO) is known to play a key role in various vascular diseases, the present study was undertaken to determine the role of NO in angiogenesis‐mediated processes using the NO donor, S‐nitroso N‐acetyl penicillamine (SNAP) and S‐nitroso N‐acetyl glutathione (SNAG). The antiangiogenic efficacy of these NO donors was examined using in vivo and in vitro model systems. The in vitro studies demonstrated the ability of SNAP to inhibit cytokine fibroblast growth factor (FGF2)‐stimulated tube formation and serum‐induced cell proliferation. The inhibitory effect on cell proliferation by SNAP concentrations above the millimolar range was associated with significant shifts in the concentration of NO metabolites. Furthermore, using the mouse Matrigel implant model and the chick chorioallantoic membrane (CAM) models, SNAP demonstrated maximal inhibitory efficacy (85–95% inhibition) of cytokine (FGF2)‐induced neovascularization in both in vivo models. SNAP and SNAG resulted in 85% inhibition of FGF2‐induced neovascularization in the mouse Matrigel model when given at 5 mg/kg/day infusion in minipumps during 14 days and 87% inhibition of angiogenesis induced by FGF2 in the CAM when administered a single dose of 50 μg. Thus, NO donors might be a useful tool for the inhibition of angiogenesis associated with human tumor growth, or neovascular, ocular, and inflammatory diseases. J. Cell. Biochem. 80:104–114, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

17.
Previous studies have shown that nitric oxide (NO) inhibits apoptosis of retinal neurons in culture through the canonical cyclic GMP/protein kinase G (PKG)-dependent pathway, but also involving multiple kinase pathways, such as phosphatidylinositol 3′ kinase (PI3k) and AKT. NO and AKT exhibit survival-promoting properties and display important roles in both CNS development and plasticity. The purpose of this study was to evaluate the effects of exogenous NO, derived from the NO donor S-nitroso-N-acetylpenicillamin (SNAP), or endogenous NO, produced from l-arginine, on AKT phosphorylation in cultured chick retinal neurons. Our results demonstrate that SNAP or l-arginine enhances AKT phosphorylation on both serine-473 and threonine-308 residues in a concentration and time-dependent manner. This effect was mediated by the activation of soluble guanylyl cyclase and PKG, since it was blocked by the respective enzyme inhibitors ODQ or LY83583 and KT5823, as well as by transduction with shRNA lentiviruses coding PKGII shRNA, and mimicked by the respective enzyme activators YC-1 and 8-Bromo cyclic GMP, and also by the cyclic GMP phosphodiesterase inhibitor zaprinast. In addition, LY294002 or wortmannin suppressed the SNAP effect, indicating the involvement of phosphoinositide 3′ kinase. Moreover, the mTOR inhibitor KU0063794 blocked SNAP-induced AKT phosphorylation at both residues, suggesting the participation of the mTORC2 complex in the process. Glutamate and NMDA also promoted AKT phosphorylation and a nitric oxide synthase inhibitor abrogated these effects, revealing a mechanism involving the activation of NMDA receptors and NO production. We have also found that SNAP and l-arginine induced AKT translocation into the nucleus of retinal neurons as well as other neuronal cell lines. SNAP also protects retinal cells from death induced by hydrogen peroxide and this effect was blocked by the phosphoinositide 3′ kinase inhibitor LY294002. We therefore conclude that NO produced from endogenous or exogenous sources promotes AKT activation and its shuttling to the nucleus, probably participating in neuronal survival pathways important during CNS development.  相似文献   

18.
Abstract: Inclusion of sodium nitroprusside {Na2[Fe2+-(CN)5NO]} into the culture medium is toxic to cultured rat cerebellar granule neurons. A possible underlying mechanism may be the inhibition of phosphoinositide (PI) response to excitatory amino acids (EAAs) because activation of glutamate receptors can be neuroprotective and neurotrophic in differentiating neurons. Sodium nitroprusside selectively inhibited the PI response to EAAs (NMDA > glutamate = quisqualate > kainate) without affecting that to carbachol or KCI. In contrast, S-nitroso-N-acetylpenicillamine (SNAP), another nitric oxide (NO) donor, potentiated NMDA-induced PI hydrolysis. Hemoglobin reversed the effects of nitroprusside and SNAP. However, NO may not be involved because NO solution was without effect and N-acetylpenicillamine, a SNAP analogue that does not contain a NO moiety, also potentiated NMDA-induced PI hydrolysis in a hemoglobin-sensitive manner. Furthermore, the metabolites of NO (nitrate and nitrite), l -arginine, reduced glutathione, 8-bromo-cyclic guanosine 3′:5′-cyclic monophosphate (8-Br-cGMP), and atrial natriuretic peptide, which accelerates the production of cGMP independent of NO, were ineffective as modulators. However, potassium ferrocyanide {K4[Fe2+(CN)6]}, but not potassium ferricyanide {K3[Fe3+(CN)6]}, inhibited NMDA-induced PI hydrolysis as effectively as nitroprusside, but this inhibition was not reversed by hemoglobin. Cyanide, a product from the disintegration of nitroprusside, potentiated rather than inhibited NMDA-induced PI hydrolysis. Taken together, these results suggest that the parent molecule itself, nitroprusside, contributes primarily in inhibiting EAA-induced PI hydrolysis. Inhibition of EAA-induced PI hydrolysis may in part mediate the mechanisms of nitroprusside toxicity in primary cultures of differentiating cerebellar granule neurons.  相似文献   

19.
Excessive excitatory action of glutamate and nitric oxide (NO) has been implicated in degeneration of striatal neurons. Evidence had been provided that Na+K+-ATPase might be involved in this process. Here we investigated whether glutamate-regulated messengers, such as NO and cyclic GMP, could modulate the activity of membrane Na+K+-ATPase. Our results demonstrated that NO donors sodium nitroprusside (SNP at 30 and 300 microM) and S-nitroso-N-acetylpenicillamine (SNAP at 200 microM) increased alpha2,3Na+K+-ATPase activity which was blocked by the NO chelator, haemoglobin and was independent of [Na+]. This regulation was associated with cGMP synthesis and mimicked by glutamate (300 microM) and 8-Br-cyclic GMP (4 mM). 8-Br-cGMP-induced stimulation of Na+K+-ATPase activity could be blocked by KT5823 (an inhibitor of cGMP-dependent protein kinase, PKG), but not by KT5720 (an inhibitor of cAMP-dependent protein kinase, PKA). N-Methyl-D-aspartate (NMDA) receptors appeared to be involved in the effect of glutamate, since MK-801 (NMDA receptor antagonist) produced a partial reduction in glutamate-induced activation of the enzyme. MK-801 was not synergistic to L-NAME (NOS inhibitor), suggesting that glutamate stimulates the NMDA-NOS pathway to activate alpha2,3 Na+K+-ATPase in rat striatum. This regulation was associated with cyclic GMP (but not cyclic AMP) synthesis. These data indicate the existence, in vitro, of a regulatory pathway by which glutamate, acting through NO and cGMP, can cause alterations in striatal alpha2,3 Na+K+-ATPase activity.  相似文献   

20.
Davidov T  Weiss HR  Tse J  Scholz PM 《Life sciences》2006,79(17):1674-1680
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号