首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
In the heat shock response of bacillary cells, HrcA repressor proteins negatively control the expression of the major heat shock genes, the groE and dnaK operons, by binding the CIRCE (controlling inverted repeat of chaperone expression) element. Studies on two critical but yet unresolved issues related to the structure and function of HrcA were performed using mainly the HrcA from the obligate thermophile Bacillus thermoglucosidasius KP1006. These two critical issues are (i) identifying the region at which HrcA binds to the CIRCE element and (ii) determining whether HrcA can play the role of a thermosensor. We identified the position of a helix-turn-helix (HTH) motif in B. thermoglucosidasius HrcA, which is typical of DNA-binding proteins, and indicated that two residues in the HTH motif are crucial for the binding of HrcA to the CIRCE element. Furthermore, we compared the thermostabilities of the HrcA-CIRCE complexes derived from Bacillus subtilis and B. thermoglucosidasius, which grow at vastly different ranges of temperature. The thermostability profiles of their HrcA-CIRCE complexes were quite consistent with the difference in the growth temperatures of B. thermoglucosidasius and B. subtilis and, thus, suggested that HrcA can function as a thermosensor to detect temperature changes in cells.  相似文献   

8.
9.
10.
11.
12.
13.
Our working hypothesis is that the major molecular chaperones DnaK and GroE play central roles in the ability of oral bacteria to cope with the rapid and frequent stresses encountered in oral biofilms, such as acidification and nutrient limitation. Previously, our laboratory partially characterized the dnaK operon of Streptococcus mutans (hrcA-grpE-dnaK) and demonstrated that dnaK is up-regulated in response to acid shock and sustained acidification (G. C. Jayaraman, J. E. Penders, and R. A. Burne, Mol. Microbiol. 25:329-341, 1997). Here, we show that the groESL genes of S. mutans constitute an operon that is expressed from a stress-inducible sigma(A)-type promoter located immediately upstream of a CIRCE element. GroEL protein and mRNA levels were elevated in cells exposed to a variety of stresses, including acid shock. A nonpolar insertion into hrcA was created and used to demonstrate that HrcA negatively regulates the expression of the groEL and dnaK operons. The SM11 mutant, which had constitutively high levels of GroESL and roughly 50% of the DnaK protein found in the wild-type strain, was more sensitive to acid killing and could not lower the pH as effectively as the parent. The acid-sensitive phenotype of SM11 was, at least in part, attributable to lower F(1)F(0)-ATPase activity. A minimum of 10 proteins, in addition to GroES-EL, were found to be up-regulated in SM11. The data clearly indicate that HrcA plays a key role in the regulation of chaperone expression in S. mutans and that changes in the levels of the chaperones profoundly influence acid tolerance.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The GroE proteins of Escherichia coli are heat shock proteins which have also been shown to be molecular chaperone proteins. Our previous work has shown that the GroE proteins of E. coli are required for UV mutagenesis. This process requires the umuDC genes which are regulated by the SOS regulon. As part of the UV mutagenesis pathway, the product of the umuD gene, UmuD, is posttranslationally cleaved to yield the active form, UmuD'. In order to investigate what role the groE gene products play in UV mutagenesis, we measured UV mutagenesis in groE+ and groE strains which were expressing either the umuDC or umuD'C genes. We found that expression of umuD' instead of umuD will suppress the nonmutability conferred by the groE mutations. However, cleavage of UmuD to UmuD' is unaffected by mutations at the groE locus. Instead we found that the presence of UmuD' increased the stability of UmuC in groE strains. In addition, we obtained evidence which indicates that GroEL interacts directly with UmuC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号