首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

2.
[14C]Acetylcholine (ACh) release and parallel alterations in 45Ca2+ uptake and intrasynaptosomal free CA2+ concentration ([Ca2+]i) were measured in guinea-pig brain cortex synaptosomes. Depolarization by high K+ concentrations caused a rapid transient increase in Ca2+ uptake, terminating within 60 s (rate constant = 0.060 s-1; t1/2 = 11.6 s). This resulted in a rapid increase (within 1 s) in [Ca2+1]i, which then fell to a maintained but still-elevated plateau level (t1/2 for the decline was 15 s). Peaks of [Ca2+]i showed a sigmoidal dependence on depolarization, contrasting with the simple linear dependence of plateau levels of [Ca2+]i. The K+-evoked ACh release also had two phases: a fast initial increase (t1/2 = 11.3 s), which terminated within 60 s, was followed by a slow additional increase during sustained depolarizations of up to 10 min. Depolarization by veratridine led to a slow gradual increase in Ca2+ uptake (t1/2 = 130 s) over a 10-min incubation period, whereas an elevated plateau level of [Ca2+]i was achieved within 2 min (without a rapid peak elevation). The Ca2+-dependent fraction of the veratridine-evoked ACh release correlated with the increase in [Ca2+]i rather than with Ca2+ uptake. Using two different methods of depolarization partially circumvented the time limitations imposed by a buffering Ca2+ indicator and we suggest that, in the main, ACh is released in bursts associated with [Ca2+]i transients.  相似文献   

3.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

4.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

5.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

6.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

7.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

8.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

9.
Parallel studies were carried out in the rabbit iris on (a) the effects of Na+ and/or Ca2+ on the acetylcholine-stimulated 32P labeling of phosphatidic acid (PA) and phosphatidylinositol (PI) and the breakdown of polyphosphoinositides (poly PI), and (b) the effects of these cations on the specific radioactivity of [gamma-32P]ATP. Incorporation of 32P1 into ATP and phosphoinositides is time-dependent, and it is remarkably dependent upon Na+ concentration in the incubation medium. The Na+ effect is reversible. Calcium ion, in the absence of Na+, had no effect on the specific radioactivity of ATP in 32P-labeled iris muscle; however, it moderately stimulated the 32P labeling of PA and PI and the breakdown of poly PI. In contrast, the addition of Na+, in the presence or absence of Ca2+, significantly reduced the specific radioactivity of ATP and 32P labeling of phospholipids in the 32P-labeled iris muscle. Acetylcholine had no measurable effect on the specific radioactivity of ATP. Furthermore, the neurotransmitter stimulated the 32P labeling of PA and PI and the breakdown of poly PI in the 32P-labeled muscle only in the presence of both Na+ and Ca2+. These data provide additional support for the concept that in the rabbit iris receptor-activated Ca2+ fluxes mediate or precede the effects of alpha-adrenergic and cholinergic muscarinic agents on phosphoinositide breakdown into 1,2-diacylglycerol and inositol phosphates and that restoration of the polar head groups to the 1,2-diacylglycerol (i.e., the recovery stage) is probably associated with Na+ outflux, via the Na+ -pump mechanism.  相似文献   

10.
Microamperometry was used to monitor quantal catecholamine release from individual PC12 cells in response to raised extracellular K+ and caffeine. K+-evoked exocytosis was entirely dependent on Ca2+ influx through voltage-gated Ca2+ channels, and of the subtypes of such channels present in these cells, influx through N-type was primarily responsible for triggering exocytosis. L-type channels played a minor role in mediating K+-evoked secretion, whereas P/Q-type channels did not appear to be involved in secretion at all. Caffeine also evoked catecholamine release from PC12 cells, but only in the presence of extracellular Ca2+. Application of caffeine in Ca2+-free solutions evoked large, transient rises of [Ca2+]i, but did not trigger exocytosis. When Ca2+ was restored to the extracellular solution (in the absence of caffeine), store-operated Ca2+ influx was observed, which evoked exocytosis. The amount of secretion evoked by this influx pathway was far greater than release triggered by influx through L-type Ca2+ channels, but less than that caused by Ca2+ influx through N-type channels. Our results indicate that exocytosis may be regulated even in excitable cells by Ca2+ influx through pathways other than voltage-gated Ca2+ channels.  相似文献   

11.
Kinetic analysis of 45Ca2+ uptake by rat brain mitochondria in Ca2+ - 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that spermine both increased the apparent affinity for Ca2+ and decreased the cooperativity of uptake. Both effects are consistent with an allosteric activation of uptake by spermine. The stimulating effect of spermine on 45Ca2+ uptake was maximal with mitochondria from postnatal day 10 animals and then steadily decreased with increasing age to reach adult values by approximately 30 postnatal days; this was observed independently of the substrates used to fuel mitochondria. Mitochondrial Ca2+ buffering was also analyzed by use of a Ca2+-selective electrode. Addition of a large bolus of Ca2+ produced a decrease in the subsequent equilibrium extramitochondrial Ca2+ concentration (or a "rebound overshoot") under some conditions. It is proposed that this effect is the result of an allosteric activation of Ca2+ uptake by Ca2+. This effect was slowly reversible, or hysteretic, and was blocked by spermine. The overshoot was increased in the presence of higher concentrations of Mg2+ and was absent when mitochondria were incubated with 0.3 mM Mg2+. It was maximal in mitochondria prepared from early postnatal brain, and changes in the magnitude of the effect during development paralleled those obtained with spermine stimulation of 45Ca2+ uptake. The data suggest that spermine produces an allosteric activation of Ca2+ uptake by binding to the same regulatory sites that are involved in the Ca2+-induced activation. The results as a whole suggest that spermine could modulate mitochondrial buffering of the intracellular Ca2+ concentration in brain, particularly during the early postnatal period.  相似文献   

12.
The 29-amino-acid peptide galanin (GAL) caused concentration-dependent inhibition of the accumulation of 3H-inositol phosphates (3H-InsPs) induced by the muscarinic agonist carbachol (CARB; 10(-3)-10(-5) M) in the presence of 5 mM lithium, specifically in tissue miniprisms from rat ventral hippocampus. The inhibitory effect of GAL involved the mono-, bis-, tris-, and tetrakisphosphates formed during activation for 2 min of phospholipase C by CARB (1 mM) in the absence of lithium. GAL (1 microM) did not affect alpha-adrenergic or serotonergic type 2 receptor-mediated phosphoinositide (PI) breakdown in the same tissue. GAL by itself neither acted on basal levels of 3H-InsPs nor affected muscarinic receptors in binding studies. Blockade of the T-, N-, and L-types of voltage-sensitive calcium channel (VSCC) with 200 microM Cd2+ reduced muscarinic receptor-mediated PI breakdown by 50% and abolished the inhibitory effect of GAL (1 microM). Reduction of the extracellular Ca2+ concentration from 1.3 mM to 0.49 microM abolished the GAL inhibition of CARB-stimulated PI hydrolysis. Ca2+ influx promoted by 18 mM K+ depolarization or by 1 microM Bay K 8644, a selective agonist of the L-type VSCC, prevented the inhibitory effect of GAL. Blockade of the L-type VSCC with nifedipine (1 microM) potentiated the inhibitory effects of GAL without affecting muscarinic stimulation of PI breakdown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

14.
The mouse monoclonal antibody HNK-1 and the human monoclonal IgM antibody present in patients with polyneuropathy both recognize carbohydrate epitope(s) on human myelin-associated glycoprotein and P0. In the present study, the oligosaccharide structures that bear the antibody epitope(s) were investigated. The extracellular derivative of myelin-associated glycoprotein (dMAG) was purified by immunoaffinity chromatography. P0 was electroeluted from gel slices. Western blot analysis of whole glycoproteins demonstrated that the epitopes for HNK-1 and the human monoclonal IgM antibody were different. The glycopeptides obtained by proteolysis of purified dMAG and P0 were separated and characterized by affinity chromatography on concanavalin A-Sepharose. Both dMAG and P0 displayed heterogeneity in their oligosaccharide structures, i.e., they both contained mainly tri- and tetraantennary oligosaccharides (approximately 80%), although biantennary (10%) and high-mannose and/or hybrid (10%) oligosaccharides were present. The human monoclonal IgM antibody epitope was present on all types of isolated oligosaccharide structures from either dMAG and P0. The HNK-1 epitope was present on all types of oligosaccharide structures of dMAG, whereas it was present only on tri- and tetraantennary structures of P0.  相似文献   

15.
Analysis of the initial rates of 45Ca2+ uptake by rat brain mitochondria in Ca2+-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that nontelencephalic mitochondria exhibited both a much less pronounced stimulatory effect of spermine and significantly more hyperbolic kinetics of Ca2+ uptake than telencephalic mitochondria. Nontelencephalic mitochondria were also markedly less susceptible to a Ca2+-induced hysteretic allosteric activation of the Ca2+ uniporter. A new Ca2+ loading procedure, which strikingly illustrates differences in mitochondrial Ca2+ buffering characteristics, is also described. In this procedure, low concentrations of Ca2+ (1, 2, or 5 microM) were repetitively added to mitochondria every 30 s while changes in free Ca2+ concentration were recorded. Spermine induced a marked attenuation of the rise in free Ca2+ level under these conditions. Steady-state rates of Ca2+ uptake were determined by a quantitative analysis of the buffering of repetitive Ca2+ additions, and, again, brain regional differences were qualitatively similar to those observed in the initial rate kinetics; Ca2+ uptake by nontelencephalic mitochondria in the steady state was markedly less responsive to stimulation by spermine and appeared to have a more hyperbolic dependence on Ca2+ in the absence of spermine. These results also suggest that there is a lag time in the activation of the uniporter by Ca2+, in addition to the hysteresis that has previously been observed in the deactivation of the uniporter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The K+-stimulated efflux of endogenous taurine from primary rat cerebellar astrocyte cultures prepared from 7-9-day-old rats was studied at 16-18 days in vitro using HPLC analysis. Taurine efflux was dose-dependent at K+ concentrations between 10 mM and 80 mM, with an EC50 of approximately 50 mM. Maximum stimulation of efflux above basal levels ranged from 56% at 10 mM K+ (204 pmol/min/mg protein) to 470% at 80 mM K+ (960 pmol/min/mg protein). Removal of Ca2+ from the buffer and the addition of either 1 mM EGTA or 10 mM Mg2+ abolished K+-stimulated efflux. Taurine efflux peaked and fell in parallel with the K+ concentration, but with an approximate lag of 3-5 min. The time course and amount of preloaded [3H]taurine released did not differ significantly from that seen for endogenous efflux. Basal taurine efflux varied inversely with the extracellular concentration of Ca2+ over the concentration range 0-5.0 mM. The observed Ca2+ dependence is consistent with a role for Ca2+ in the regulation of taurine release. Furthermore, taurine release from astrocytes in response to elevated K+ may reflect a neuromodulatory role for this amino acid in the CNS.  相似文献   

17.
To gain some understanding of the regulatory mechanism involved in caffeine-induced Ca2+ release in adrenal chromaffin cells, we took advantage of the paradoxical observation that removal of divalent cations potentiated the secretory response to caffeine. We measured the concentration of cytosolic free Ca2+ ([Ca]in) in isolated cat chromaffin cells, by fura-2 microfluorometry, to see whether there was any correlation between the secretory response and the rise in [Ca]in. The caffeine-induced [Ca]in rise and catecholamine secretion were increased by treatment of cells with a divalent cation-deficient solution. These potentiated responses were strongly inhibited either by pretreatment with ryanodine, by the reduction of the external Na+ concentration, or by the addition of Ca2+ channel blockers. Removal of divalent cations caused a large rise in the cytosolic free Na+ concentration ([Na]in), which was measured using SBFI microfluorometry. This rise in [Na]in was reduced either by adding Ca2+ channel blockers or by reducing the external Na+ concentration. These results show a good correlation between caffeine-induced Ca2+ release and [Na]in at the time of stimulation, suggesting that caffeine-induced Ca2+ release is regulated by [Na]in.  相似文献   

18.
The presynaptic Ca2+ concentration ([Ca]i) was evaluated by studying intracellular free Ca2+ with quin-2 and fura-2 in synaptosomal preparations. The synaptosomal preparations were purified with hyperosmotic (sucrose) and isoosmotic (Percoll) density gradient centrifugation. Synaptosomes are most viable in the heavier fractions of the density gradients. These synaptosomal fractions exhibit the lowest [Ca]i, [204 +/- 2 nM for Percoll (C-band) synaptosomes, loaded at 30 degrees C with the acetoxymethyl ester of fura-2 (fura-2-AM)], a high stability during prolonged incubations at 37 degrees C, and a more potent response to membrane depolarization by elevated extracellular [K+]. [Ca]i measurement was critically dependent on dye loading, calibration, type of dye used, synaptosomal preparation, and incubation temperature (30 degrees or 37 degrees C). Loading quin-2 in synaptosomes inserts a considerable buffer component in the synaptosomal [Ca]i regulation, and consequently there is a quin-2 dependency of [Ca]i, independent of endogenous heavy metal ions. Use of fura-2 is preferable in synaptosomes, although above a critical fura-2-AM/protein ratio during loading ester hydrolysis is not complete, giving rise to errors in [Ca]i determination. Ionomycin is a selective tool to detect the presence of partially hydrolyzed esters and saturate indicators in the cytosol with Ca2+ for calibration. Parallel studies on lactate dehydrogenase and fura-2 fluorescence indicate that synaptosomal viability is very sensitive to prolonged incubations at 37 degrees C. This study shows the applicability of measuring steady-state [Ca]i and dynamic [Ca]i changes quantitatively in fura-2-loaded synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations >100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

20.
Abstract: The ability of antidepressant drugs (ADs) to increase the concentration of intracellular Ca2+ ([Ca2+]i) was examined in primary cultured neurons from rat frontal cortices using the Ca2+-sensitive fluorescent indicator fura-2. Amitriptyline, imipramine, desipramine, and mianserin elicited transient increases in [Ca2+]i in a concentration-dependent manner (100 μM to 1 mM). These four AD-induced [Ca2+]i increases were not altered by the absence of external Ca2+ or by the presence of La3+ (30 μM), suggesting that these ADs provoked intracellular Ca2+ mobilization rather than Ca2+ influx. All four ADs increased inositol 1,4,5-trisphosphate (IP3) contents by 20–60% in the cultured cells. The potency of the IP3 production by these ADs closely correlated with the AD-induced [Ca2+]i responses. Pretreatment with neomycin, an inhibitor of IP3 generation, significantly inhibited amitriptyline- and imipramine-induced [Ca2+]i increases. In addition, by initially perfusing with bradykinin (10 μM) or acetylcholine (10 μM), which can stimulate the IP3 generation and mobilize the intracellular Ca2+, the amitriptyline responses were decreased by 76% and 69%, respectively. The amitriptyline-induced [Ca2+]i increases were unaffected by treatment with pertussis toxin. We conclude that high concentrations of amitriptyline and three other ADs mobilize Ca2+ from IP3-sensitive Ca2+ stores and that the responses are pertussis toxin-insensitive. However, it seems unlikely that the effects requiring high concentrations of ADs are related to the therapeutic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号