首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
There is evidence suggesting that radiosensitization induced in mammalian cells by substitution in the DNA of thymidine with BrdU has a component that relies on inhibition of repair and/or fixation of radiation damage. Here, experiments designed to study the mechanism of this phenomenon are described. The effect of BrdU incorporation into DNA was studied on cellular repair capability, rejoining of interphase chromosome breaks, as well as induction and rejoining of DNA double- and single-stranded breaks (DSBs and SSBs) in plateau-phase CHO cells exposed to X rays. Repair of potentially lethal damage (PLD), as measured by delayed plating of plateau-phase cells, was used to assay cellular repair capacity. Rejoining of interphase chromosome breaks was assayed by means of premature chromosome condensation (PCC); induction and rejoining of DNA DSBs were assayed by pulsed-field gel electrophoresis and induction and rejoining of DNA SSBs by DNA unwinding. A decrease was observed in the rate of repair of PLD in cells grown in the presence of BrdU, the magnitude of which depended upon the degree of thymidine replacement. The relative increase in survival caused by PLD repair was larger in cells substituted with BrdU and led to a partial loss of the radiosensitizing effect compared to cells tested immediately after irradiation. A decrease was also observed in the rate of rejoining of interphase chromosome breaks as well as in the rate of rejoining of the slow component of DNA DSBs in cells substituted with BrdU. The time constants measured for the rejoining of the slow component of DNA DSBs and of interphase chromosome breaks were similar both in the presence and in the absence of BrdU, suggesting a correlation between this subset of DNA lesions and interphase chromosome breaks. It is proposed that a larger proportion of radiation-induced potentially lethal lesions becomes lethal in cells grown in the presence of BrdU. Potentially lethal lesions are fixed via interaction with processes associated with cell cycle progression in cells plated immediately after irradiation, but can be partly repaired in cells kept in the plateau-phase. It is hypothesized that fixation of PLD is caused by alterations in chromatin conformation that occur during normal progression of cells throughout the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The nucleoid sedimentation technique is one of the most sensitive methods for measuring DNA excision repair. With this technique, we have shown that both UV- and ionizing radiation-type repair (the latter induced by bleomycin) can be discriminated in HeLa and normal diploid cells using 1-beta-D-arabinofuranosylcytosine. The latter compound inhibits UV-type repair synthesis, and thus causes DNA breaks due to enzymic incision to persist, but has no effect on rejoining DNA after ionizing radiation-type damage. It was then possible to prove that 4-nitroquinoline-1-oxide induces both types of lesions which are repaired simultaneously. This effect could be demonstrated in HeLa and normal human diploid cells in a single experimental set-up.  相似文献   

3.
The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an important mechanism of cadmium induced mutagenicity and carcinogenicity.  相似文献   

4.
The molecular basis for chromosome aberration formation has been studied using the sensitive techniques of premature chromosome condensation and DNA alkaline elution. The dose response of Chinese hamster ovary cells to bleomycin treatment at the DNA and chromosome levels was compared. Each DNA elution curve showed a 2-component profile, with a more sensitive component apparent at low doses. The chromosome aberration curves also exhibited a 2-component profile when determined in G2-PCC; however, this phenomenon was less apparent when chromosome damage was enumerated in mitotic figures. These results suggest that differential sensitivity to bleomycin exists within the cellular chromatin. The effect of dose rate on aberration formation was examined by administering bleomycin at 2 concentrations that, with different treatment times, yielded equivalent amounts of DNA damage. The chromatid exchange rate was independent of dose rate, suggesting that rapidly repaired DNA lesions are not involved in the formation of exchanges.  相似文献   

5.
DNA damage and cytogenetic effects of ionizing radiation were investigated in Chinese hamster ovary (CHO) cells and unstimulated human peripheral blood lymphocytes. DNA damage and repair were analysed by alkaline elution under conditions that predominantly measured DNA single-strand breaks (ssb). X-radiation (2.5 Gy) induced ssb in both CHO cells and unstimulated lymphocytes, and the breaks were repaired within 30 and 90 min, respectively. This rapid repair was delayed by the poly(ADP-ribose) polymerase inhibitor, 3-aminobenzamide (3AB). The cytogenetic effects of the 3AB-induced delay in DNA repair were examined by analysing sister chromatid exchange (SCE) frequency in CHO cells and fragmentation of prematurely condensed chromosomes (PCC) in unstimulated human lymphocytes after 2.5 Gy of X-rays. Although 3AB delayed the rejoining of DNA ssb, this delay did not result in increased cytogenetic damage manifested as either SCE or fragmentation of PCC. These results indicate that the rapidly rejoining DNA ssb are not important in the production of chromosome damage.  相似文献   

6.
C W Moore 《Biochemistry》1990,29(5):1342-1347
The contribution of DNA repair to the net number of DNA breaks produced during chemical degradation of DNA was determined by using temperature-sensitive mutant cells deficient in ATP-dependent DNA ligase [poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase, EC 6.5.1.1]. In a very sensitive assay for determining lesions introduced into Saccharomyces cerevisiae DNAs, 2-14C- and 6-3H-prelabeled DNAs from ligase-proficient and ligase-deficient cells were sedimented together through precalibrated, isokinetic alkaline sucrose gradients. DNA ligation was slower after chemical degradation of DNA by bleomycin than after gamma irradiation. DNA breaks increased approximately linearly with drug concentrations, and were approximately equivalent for ligase-proficient and ligase-deficient cells. These results were unexpected because ligase-deficient, but not ligase-proficient, cells lacked the capacity to eliminate DNA breaks produced by bleomycin. The results indicated that DNA repair did not occur during the chemical degradation of DNA under the experimental conditions. Bleomycin B2 produced considerably more DNA breaks than bleomycin A2 over a range of concentrations in ligase-proficient cells, which tolerated higher numbers of DNA breaks in general than ligase-deficient cells. The chemical analogues are structurally identical except for their cationic C-terminal amine. The actual number of DNA breaks produced by bleomycin A2 or bleomycin B2, and not the concentration of bleomycin A2 or bleomycin B2 per se, determined the amount of cell killing. DNA repair is critical in quantitating DNA breaks produced by chemicals, but was ruled out as a factor in the higher DNA breakage by bleomycin B2 than bleomycin A2.  相似文献   

7.
In this study, we examined DNA repair synthesis in human cells treated with the radiomimetic drug bleomycin, which efficiently induces double-strand breaks (DSBs). Using tyramide-biotin to amplify fluorescent signals, discrete nuclear foci from the incorporation of 5-iododeoxyuridine (IdU) were detected in proliferating human cells treated with bleomycin. We believe this comes from the repair of DSBs. An increase in the number of foci (>5 per nucleus) was detected in a major fraction (75%) of non-S-phase cells labeled for 30 min with IdU 1 h after the end of bleomycin treatment. The fraction of cells with multiple IdU-containing foci was found to decrease 18 h after treatment. The average number of foci per nucleus detected 1 h after bleomycin treatment was found to decrease twofold between 1 and 3.5 h, indicating that the foci may be associated with the slow component of DSB repair. The presence of DSBs in bleomycin-treated cells was confirmed using antibodies against phosphorylated histone H2AX (gamma-H2AX), which is strictly associated with this type of DNA damage. After treatment with bleomycin, non-S-phase cells also displayed heterogeneous nuclear foci containing tightly bound proliferating cell nuclear antigen (PCNA), suggesting an ongoing process of unscheduled DNA synthesis. PCNA is known to be involved in base excision repair, but a fraction of the PCNA foci may also be associated with DNA synthesis occurring during the repair of DSBs.  相似文献   

8.
All mutagenic agents induce lesions in the cellular DNA and they are repaired efficiently by different repair mechanisms. Un-repaired and mis-repaired lesions lead to chromosomal aberrations (CAs). Depending upon the mutagenic agents involved, different DNA repair pathways, such as nucleotide excision repair (NER), base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination repair (HRR), cross-link repair (FANC), single strand annealing (SSA) etc., are operative. Following ionising radiation, DNA double strand breaks (DSBs, which are considered to be the most important leasion leading to observed biological effects) are repaired either by NHEJ and/or HRR. We have investigated the relative role of these two repair pathways leading to chromosomal aberrations using Chinese hamster ovary (CHO) mutant cells deficient in one of these two repair pathwatys. NHEJ operates both in G1 and G2 phases of the cell cycle, wheras HHR operates mainly in S and G2 phases of the cell cycle. In NHEJ-deficient mutant cells irradiated in G1, un-repaired double strand breaks reaching S phase are repaired (unexpectedly with a large mis-repair component) by HRR. In HRR-deficient mutant cells, un-repaired DSBs reaching S phase are repaired by NHEJ (unexpectedly with a low mis-repair component) as evidenced by the frequencies of chromatid type aberrations. Employing a similar approach, following treatment with benzo(alpha)pyrene-7,8diol-9,10epoxide (BPDE), the active metabolite of benzo(alpha)pyrene, NER and HRR seem to be the most important repair pathways protecting against chromosomal damage induced by this agent. In the case of acetaldehyde, (primary metabolite of alcohol in vivo) a DNA cross-linking agent, HRR and FANC pathways are important for protection against damage induced by this agent. Irrespective of the type of DNA lesions induced, ultimately they have to be converted to DSBs in order to give rise to CA. Therefore, both NHEJ and HRR are also involved to some extent in the origin of CA following treatment with S-dependent agents.The relative importance of different repair pathways in bestowing protection against DNA damage leading to chromosomal alterations is discussed.  相似文献   

9.
Illumination with red light of murine L929 fibroblasts that had been sensitized with haematoporphyrin derivative caused DNA single-strand breaks after a lag time of about 20 min, as revealed by alkaline elution. The cells appeared not to be capable of recovering from this damage. The photodynamic effect of haematoporphyrin derivative on DNA repair was assessed by monitoring the repair kinetics of DNA damage induced by either X-rays, u.v. light (254 nm) or methyl methanesulphonate treatment subsequent to a non-DNA-damaging photodynamic treatment with haematoporphyrin derivative. On 'post-incubation', the normally rapid repair of X-ray-induced DNA strand breaks did not occur, whereas with u.v. light and methyl methanesulphonate treatment after photodynamic treatment prolonged post-incubation resulted in an increase in the number of strand breaks rather than the normally observed decrease. This clearly shows that, after a photodynamic treatment with haematoporphyrin derivative that itself did not cause strand breaks, excision repair in L929 cells is severely inhibited at a stage beyond the incision step.  相似文献   

10.
Cells derived from individuals with ataxia-telangiectasia (AT) are more sensitive to ionizing radiation and radiomimetic drugs, as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. Our previous studies showed that, despite similar initial levels of DNA double-strand breaks (DSBs), AT cells express higher initial chromosome damage than do normal cells as demonstrated by the technique of premature chromosome condensation. However, this finding accounted for only a portion of the increased sensitivity (T. K. Pandita and W. N. Hittelman, Radiat. Res. 130, 94-103, 1992). The purpose of the study reported here was to examine the contribution of DNA and chromosome repair to the radiosensitivity of AT cells. Exponentially growing AT and normal lymphoblastoid cells were fractionated into cell cycle phase-enriched populations by centrifugal elutriation, and their DNA and chromosome repair characteristics were evaluated by DNA neutral filter elution (for DNA DSBs) and by premature chromosome condensation, respectively. AT cells exhibited a reduced fast-repair component in both G1- and G2-phase cells, as observed at the level of both DNA DSBs and the chromosome; however, S-phase cells showed nearly normal DNA DSB repair. The findings that AT cells exhibit an increased level of chromosome damage and a deficiency in the fast component (but not the slow component) of repair suggest that chromatin organization might play a major role in the observed sensitivity of AT cells. When survival was plotted as a function of the residual amount of chromosome damage in G1- and G2- phase cells after 90 min of repair, the curves for normal and AT cells approached each other but did not overlap. These results suggest that, although higher initial levels of chromosome damage and reduced chromosome repair capability can explain much of the radiosensitivity of AT cells, other differences in AT cells must also contribute to their sensitivity phenotype.  相似文献   

11.
The yield of DNA double-strand breaks (DSB) in the cells of mouse lymphosarcoma treated with nitrosomethylurea (NMU) was registered by means of elastoviscosimetry. It was shown that after short-term (7 min) treatment with NMU the lesions formed in DNA are efficiently repaired both in complete and conditioned media. After long-term (30 min) treatment DNA was only repaired in complete growth medium. The yield of the first fixed DSB after long-term NMU treatment correlated with the mean lethal dose D0. After short-term NMU treatment the first DSBs are registered in the dose range which is 4-fold higher than D0. The nature of lethal and potentially lethal lesions as well as the participation of various repair systems in the elimination of potentially lethal lesions are discussed.  相似文献   

12.
Ability of barley ribosomal genes to cope with damage produced in vivo by the radiomimetic agent bleomycin was investigated. Repair kinetics of bleomycin-induced double-strand breaks in ribosomal and total genomic DNA was compared. Induction and repair of double-strand breaks in defined regions of the ribosomal genes was also analyzed. Preferential sensitivity of barley linker DNA towards bleomycin treatment in vivo was established. Relatively higher yield of initially induced double-strand breaks in genomic DNA in comparison to ribosomal DNA was also found. Fragments containing intergenic spacers of barley rRNA genes displayed higher sensitivity to bleomycin than the coding sequences. No heterogeneity in the repair of DSB between transcribed and non-transcribed regions of ribosomal genes was detected. Data indicate that DSB repair in barley rDNA, although more efficient than in genomic DNA, does not correlate with the activity of nucleolus organizer regions.  相似文献   

13.
The alkaline sucrose density gradient centrifugation method was modified to permit detection of 1 lesion/10(9) daltons of DNA. With this technique, the involvements of DNA polymerases in DNA repair of damage by dimethyl sulfate, UV irradiation, neocarzinostatin, and bleomycin were studied in HeLa cells with the aid of the DNA polymerase inhibitors aphidicolin and 2',3'-dideoxythymidine. DNA repair after UV-induced damage seemed to involve only polymerase alpha, while repair of damage by the other three agents involved both polymerase alpha and a non-alpha polymerase, probably polymerase beta. But repair after damage by dimethyl sulfate differed from that after damage by neocarzinostatin or bleomycin with respect to the co-operations of polymerase alpha and polymerase beta: in repair of dimethyl sulfate-induced damage, both polymerases operated on the same lesions, whereas after damage by neocarzinostatin or bleomycin, polymerase alpha and polymerase beta functioned independently on different lesions.  相似文献   

14.
Yue J  Lu H  Liu J  Berwick M  Shen Z 《DNA Repair》2012,11(2):192-200
Filamin-A, also called actin binding protein 280 (ABP-280), cross-links the actin filaments into dynamic orthogonal network to serve as scaffolds in multiple signaling pathways. It has been reported that filamin-A interacts with DNA damage response proteins BRCA1 and BRCA2. Defects of filamin-A impair the repair of DNA double strand breaks (DSBs), resulting in sensitization of cells to ionizing radiation. In this study, we sought to test the hypothesis that filamin-A can be used as a target for cancer chemotherapy and as a biomarker to predict cancer response to therapeutic DNA damage. We found that reduction of filamin-A sensitizes cancer cells to chemotherapy reagents bleomycin and cisplatin, delays the repair of not only DSBs but also single strand breaks (SSBs) and interstrand crosslinks (ICLs), and increases chromosome breaks after the drug treatment. By treating a panel of human melanoma cell lines with variable filamin-A expression, we observed a correlation between expression level of filamin-A protein and drug IC(50). We further inhibited the expression of filamin-A in melanoma cells, and found that this confers an increased sensitivity to bleomycin and cisplatin treatment in a mouse xenograft tumor model. These results suggest that filamin-A plays a role in repair of a variety of DNA damage, that lack of filamin-A is a prognostic marker for a better outcome after DNA damage based treatment, and filamin-A can be inhibited to sensitize filamin-A positive cancer cells to therapeutic DNA damage. Thus filamin-A can be used as a biomarker and a target for DNA damage based cancer therapy.  相似文献   

15.
Arsenic is a human carcinogen, and only recently animal models have been developed that are useful in investigating its carcinogenic mode of action (MOA). However, how arsenic induces cancer is still an open question. In a previous paper, we proposed a model detailing how arsenic might induce DNA lesions leading to cytogenetic damage [A.D. Kligerman, A.H. Tennant, Toxicol. Appl. Pharmacol. 222 (2007) 281–288]. In this model we hypothesized that arsenic does not induce chromosome damage via DNA adduction but induces short-lasting lesions from the action of reactive oxygen species (ROS). These lesions cause single-strand breaks (SSB) that induce chromosome breakage when treatment is in late G1- or S-phase. However, if treatment is confined to the G0- or early G1-phase of the cell cycle, it is predicted that little or no cytogenetic damage will result at the subsequent metaphase. Here, we describe the results from testing this model using monomethylarsonous acid (MMAIII) and cytosine arabinoside (araC), a DNA chain terminator, to extend the time that DNA lesions remain open during repair to allow the lesions to reach S-phase or interact to form DNA exchanges that would lead to exchange aberrations at metaphase. The results of our study only partially confirmed our hypothesis. Instead, the results indicated that the lesions induced by MMAIII are quickly repaired through base excision repair, that there is little chance for araC to extend the life of the lesions, and thus the DNA damage induced by arsenicals that leads to chromosome aberrations is very short lived.  相似文献   

16.
Mitochondrial DNA lesions cause numerous human diseases, and it is therefore important to identify the mechanisms whereby the mitochondrion repairs the damage. We have studied in cultured Drosophila cells the repair of bleomycin-induced double-strand breaks (DSBs) in mitochondrial DNA. Our results show that DSBs are repaired as rapidly and effectively in the mitochondria as in the nucleus. DNA repair is complete within 2h following bleomycin treatment, showing that Drosophila mitochondria have an effective system of DSB repair. The mechanism and mitochondrial proteins involved remain to be identified.  相似文献   

17.
Premature chromosome condensation was induced in Indian muntjak fibroblasts after exposure of the cells to bleomycin. Further experiments were devoted to the interaction of anticlastogens and a repair inhibitor, streptovitacin A. Chromosomal aberrations due to bleomycin treatment were S -phase-independently visible in the GI and G2 phase of the cell cycle. For premature chromosome condensation experiments, a 100 fold lower concentration of the mutagen produced a similar extent of chromosome damage as in metaphase studies. Additional exposure to the anticlastogens -aminoethylisothiouronium or N-acetylcysteine revealed differences between corresponding interphase and metaphase effects and between different exposure conditions. Streptovitacin A, known as an inhibitor of protein synthesis, acted like an anticlastogen in the G2 phase of the cell cycle. Our studies show that the premature chromosome condensation technique offers various qualitative insights into primary processes of mutagenicity and antimutagenicity, but requires further improvement and careful choice of the cell system for study.Abbreviationd AET -aminoethylisothiouronium - BM bleomycin - CHO Chinese hamster ovary - DMSO dimethylsulfoxide - FBS fetal bovine serum - NAC N-acetylcysteine - PCC premature chromosome condensation prematurely condensed chromosomes - PEG polyethylene glycol - SA streptovitacin A  相似文献   

18.
Characteristic of damage introduced in DNA by ionizing radiation is the induction of a wide range of lesions. Single-strand breaks (SSBs) and base damages outnumber double-strand breaks (DSBs). If unrepaired, these lesions can lead to DSBs and increased mutagenesis. XRCC1 and DNA polymerase beta (polbeta) are thought to be critical elements in the repair of these SSBs and base damages. XRCC1-deficient cells display a radiosensitive phenotype, while proliferating polbeta-deficient cells are not more radiosensitive. We have recently shown that cells deficient in polbeta display increased radiosensitivity when confluent. In addition, cells expressing a dominant negative to polbeta have been found to be radiosensitized. Here we show that repair of radiation-induced lesions is inhibited in extracts with altered polbeta or XRCC1 status, as measured by an in vitro repair assay employing irradiated plasmid DNA. Extracts from XRCC1-deficient cells showed a dramatically reduced capacity to repair ionizing radiation-induced DNA damage. Extracts deficient in polbeta or containing a dominant negative to polbeta also showed reduced repair of radiation-induced SSBs. Irradiated repaired plasmid DNA showed increased incorporation of radioactive nucleotides, indicating use of an alternative long-patch repair pathway. These data show a deficiency in repair of ionizing radiation damage in extracts from cells deficient or altered in polbeta activity, implying that increased radiosensitivity resulted from radiation damage repair deficiencies.  相似文献   

19.
Using filter elution techniques, we have measured the level of induced single- and double-strand DNA breaks and the rate of strand break rejoining following exposure of two Chinese hamster ovary (CHO) cell mutants to bleomycin or neocarzinostatin. These mutants, designated BLM-1 and BLM-2, were isolated on the basis of hypersensitivity to bleomycin and are cross-sensitive to a range of other free radical-generating agents, but exhibit enhanced resistance to neocarzinostatin. A 1-h exposure to equimolar doses of bleomycin induces a similar level of DNA strand breaks in parental CHO-K1 and mutant BLM-1 cells, but a consistently higher level is accumulated by BLM-2 cells. The rate of rejoining of bleomycin-induced single- and double-strand DNA breaks is slower in BLM-2 cells than in CHO-K1 cells. BLM-1 cells show normal strand break repair kinetics. The level of single- and double-strand breaks induced by neocarzinostatin is lower in both BLM-1 and BLM-2 cells than in CHO-K1 cells. The rate of repair of neocarzinostatin-induced strand breaks is normal in BLM-1 cells but retarded somewhat in BLM-2 cells. Thus, there is a correlation between the level of drug-induced DNA damage in BLM-2 cells and the bleomycin-sensitive, neocarzinostatin resistant phenotype of this mutant. Strand breaks induced by both of these agents are also repaired with reduced efficiency by BLM-2 cells. The neocarzinostatin resistance of BLM-1 cells appears to be a consequence of a reduced accumulation of DNA damage. However, the bleomycin-sensitive phenotype of BLM-1 cells does not apparently correlate with any alteration in DNA strand break induction or repair, as analysed by filter elution techniques, suggesting an alternative mechanism of cell killing.  相似文献   

20.
DNA damage was induced in isolated human peripheral lymphocytes by exposure at 5 Gy to 60Co radiation. Cells were permitted to repair the DNA damage while exposed to 60-Hz fields or while sham-exposed. Exposed cells were subjected to magnetic (B) or electric (E) fields, alone or in combination, throughout their allotted repair time. Repair was stopped at specific times, and the cells were immediately lysed and then analyzed for the presence of DNA single-strand breaks (SSB) by the alkaline-elution technique. Fifty to 75 percent of the induced SSB were repaired 20 min after exposure, and most of the remaining damage was repaired after 180 min. Cells were exposed to a 60-Hz ac B field of 1 mT; an E field of 1 or 20 V/m; or combined E and B fields of 0.2 V/m and 0.05 mT, 6 V/m and 0.6 mT, or 20 V/m and 1 mT. None of the exposures was observed to affect significantly the repair of DNA SSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号