首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently demonstrated (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ, J Appl Physiol 91: 145-153, 2001) that exercise training (ET) and the antioxidant R-(+)-alpha-lipoic acid (R-ALA) interact in an additive fashion to improve insulin action in insulin-resistant obese Zucker (fa/fa) rats. The purpose of the present study was to assess the interactions of ET and R-ALA on insulin action and oxidative stress in a model of normal insulin sensitivity, the lean Zucker (fa/-) rat. For 6 wk, animals either remained sedentary, received R-ALA (30 mg. kg body wt(-1). day(-1)), performed ET (treadmill running), or underwent both R-ALA treatment and ET. ET alone or in combination with R-ALA significantly increased (P < 0.05) peak oxygen consumption (28-31%) and maximum run time (52-63%). During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose response (17-36%) at 15 min relative to R-ALA alone and of the insulin response (19-36%) at 15 min compared with sedentary controls. Insulin-mediated glucose transport activity was increased by ET alone in isolated epitrochlearis (30%) and soleus (50%) muscles, and this was associated with increased GLUT-4 protein levels. Insulin action was not improved by R-ALA alone, and ET-associated improvements in these variables were not further enhanced with combined ET and R-ALA. Although ET and R-ALA caused reductions in soleus protein carbonyls (an index of oxidative stress), these alterations were not significantly correlated with insulin-mediated soleus glucose transport. These results indicate that the beneficial interactive effects of ET and R-ALA on skeletal muscle insulin action observed previously in insulin-resistant obese Zucker rats are not apparent in insulin-sensitive lean Zucker rats.  相似文献   

2.
We have shown previously (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ. J Appl Physiol 91: 145-153, 2001) that the antioxidant R-(+)-alpha-lipoic acid (R-ALA), combined with endurance exercise training (ET), increases glucose transport in insulin-resistant skeletal muscle in an additive fashion. The purpose of the present study was to investigate possible cellular mechanisms responsible for this interactive effect. We evaluated the effects of R-ALA alone, ET alone, or R-ALA and ET in combination on insulin-stimulated glucose transport, protein expression, and functionality of specific insulin-signaling factors in soleus muscle of obese Zucker (fa/fa) rats. Obese animals remained sedentary, received R-ALA (30 mg.kg body wt(-1).day(-1)), performed ET (daily treadmill running for < or =60 min), or underwent both R-ALA treatment and ET for 15 days. R-ALA or ET individually increased (P < 0.05) insulin-mediated (5 mU/ml) glucose transport (2-deoxyglucose uptake) in soleus muscle by 45 and 68%, respectively, and this value was increased to the greatest extent (124%) in the combined treatment group. Soleus insulin receptor substrate (IRS)-1 protein was significantly increased by R-ALA alone (30%) or ET alone (31%), and a further enhancement (55%) was observed after the combination treatment in the obese animals. Enhanced levels of IRS-1 protein expression after individual or combined interventions were significantly correlated with insulin action on glucose transport activity (r = 0.597, P = 0.0055). Similarly, insulin-mediated IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase was increased by R-ALA (317%) and ET (319%) and to the greatest extent (435%) (all P < 0.05) by the combination treatment. These results indicate that the improvements of insulin action in insulin-resistant skeletal muscle after R-ALA or ET, alone and in combination, were associated with increases in IRS-1 protein expression and IRS-1 associated with p85.  相似文献   

3.
The purpose of this study was to assess the individual and interactive effects of the antioxidant alpha-lipoic acid (LPA) and the n-6 essential fatty acid gamma-linolenic acid (GLA) on insulin action in insulin-resistant obese Zucker rats. LPA, GLA, and a unique conjugate consisting of equimolar parts of LPA and GLA (LPA-GLA) were administered for 14 days at 10, 30, or 50 mg. kg body wt(-1). day(-1). Whereas LPA was without effect at 10 mg/kg, at 30 and 50 mg/kg it elicited 23% reductions (P < 0.05) in the glucose-insulin index (the product of glucose and insulin areas under the curve during an oral glucose tolerance test and an index of peripheral insulin action) that were associated with significant increases in insulin-mediated (2 mU/ml) glucose transport activity in isolated epitrochlearis (63-65%) and soleus (33-41%) muscles. GLA at 10 and 30 mg/kg caused 21-25% reductions in the glucose-insulin index and 23-35% improvements in insulin-mediated glucose transport in epitrochlearis muscle. The beneficial effects of GLA disappeared at 50 mg/kg. At 10 and 30 mg/kg, the LPA-GLA conjugate elicited 29 and 38% reductions in the glucose-insulin index. These LPA-GLA-induced improvements in whole body insulin action were accompanied by 28-63 and 38-57% increases in insulin-mediated glucose transport in epitrochlearis and soleus muscles and resulted from the additive effects of LPA and GLA. At 50 mg/kg, the metabolic improvements due to LPA-GLA were substantially reduced. In summary, these results indicate that the conjugate of the antioxidant LPA and the n-6 essential fatty acid GLA elicits significant dose-dependent improvements in whole body and skeletal muscle insulin action on glucose disposal in insulin-resistant obese Zucker rats. Moreover, these actions of LPA-GLA are due to the additive effects of its individual components.  相似文献   

4.
Our laboratory has demonstrated (Steen MS, Foianini KR, Youngblood EB, Kinnick TR, Jacob S, and Henriksen EJ, J Appl Physiol 86: 2044-2051, 1999) that exercise training and treatment with the angiotensin-converting enzyme (ACE) inhibitor trandolapril interact to improve insulin action in insulin-resistant obese Zucker rats. The present study was undertaken to determine whether a similar interactive effect of these interventions is manifest in an animal model of normal insulin sensitivity. Lean Zucker (Fa/-) rats were assigned to either a sedentary, trandolapril-treated (1 mg. kg(-1). day(-1) for 6 wk), exercise-trained (treadmill running for 6 wk), or combined trandolapril-treated and exercise-trained group. Exercise training alone or in combination with trandolapril significantly (P < 0.05) increased peak oxygen consumption by 26-32%. Compared with sedentary controls, exercise training alone or in combination with ACE inhibitor caused smaller areas under the curve for glucose (27-37%) and insulin (41-44%) responses during an oral glucose tolerance test. Exercise training alone or in combination with trandolapril also improved insulin-stimulated glucose transport in isolated epitrochlearis (33-50%) and soleus (58-66%) muscles. The increases due to exercise training alone or in combination with trandolapril were associated with enhanced muscle GLUT-4 protein levels and total hexokinase activities. However, there was no interactive effect of exercise training and ACE inhibition observed on insulin action. These results indicate that, in rats with normal insulin sensitivity, exercise training improves oral glucose tolerance and insulin-stimulated muscle glucose transport, whereas ACE inhibition has no effect. Moreover, the beneficial interactive effects of exercise training and ACE inhibition on these parameters are not apparent in lean Zucker rats and, therefore, are restricted to conditions of insulin resistance.  相似文献   

5.
Insulin resistance of skeletal muscle glucose transport is a key defect in the development of impaired glucose tolerance and Type 2 diabetes. It is well established that both an acute bout of exercise and chronic endurance exercise training can have beneficial effects on insulin action in insulin-resistant states. This review summarizes the present state of knowledge regarding these effects in the obese Zucker rat, a widely used rodent model of obesity-associated insulin resistance, and in insulin-resistant humans with impaired glucose tolerance or Type 2 diabetes. A single bout of prolonged aerobic exercise (30-60 min at approximately 60-70% of maximal oxygen consumption) can significantly lower plasma glucose levels, owing to normal contraction-induced stimulation of GLUT-4 glucose transporter translocation and glucose transport activity in insulin-resistant skeletal muscle. However, little is currently known about the effects of acute exercise on muscle insulin signaling in the postexercise state in insulin-resistant individuals. A well-established adaptive response to exercise training in conditions of insulin resistance is improved glucose tolerance and enhanced skeletal muscle insulin sensitivity of glucose transport. This training-induced enhancement of insulin action is associated with upregulation of specific components of the glucose transport system in insulin-resistant muscle and includes increased protein expression of GLUT-4 and insulin receptor substrate-1. It is clear that further investigations are needed to further elucidate the specific molecular mechanisms underlying the beneficial effects of acute exercise and exercise training on the glucose transport system in insulin-resistant mammalian skeletal muscle.  相似文献   

6.
A role for elevated glycogen synthase kinase-3 (GSK-3) activity in the multifactorial etiology of insulin resistance is now emerging. However, the utility of specific GSK-3 inhibition in modulating insulin resistance of skeletal muscle glucose transport is not yet fully understood. Therefore, we assessed the effects of novel, selective organic inhibitors of GSK-3 (CT-98014 and CT-98023) on glucose transport in insulin-resistant muscles of Zucker diabetic fatty (ZDF) rats. Incubation of type IIb epitrochlearis and type I soleus muscles from ZDF rats with CT-98014 increased glycogen synthase activity (49 and 50%, respectively, P < 0.05) but did not alter basal glucose transport (2-deoxyglucose uptake). In contrast, CT-98014 significantly increased the stimulatory effects of both submaximal and maximal insulin concentrations in epitrochlearis (37 and 24%) and soleus (43 and 26%), and these effects were associated with increased cell-surface GLUT4 protein. Lithium enhanced glycogen synthase activity and both basal and insulin-stimulated glucose transport in muscles from ZDF rats. Acute oral administration (2 x 30 mg/kg) of CT-98023 to ZDF rats caused elevations in GSK-3 inhibitor concentrations in plasma and muscle. The glucose and insulin responses during a subsequent oral glucose tolerance test were reduced by 26 and 34%, respectively, in the GSK-3 inhibitor-treated animals. Thirty minutes after the final GSK-3 inhibitor treatment, insulin-stimulated glucose transport was significantly enhanced in epitrochlearis (57%) and soleus (43%). Two hours after the final treatment, insulin-mediated glucose transport was still significantly elevated (26%) only in the soleus. These results indicate that specific inhibition of GSK-3 enhances insulin action on glucose transport in skeletal muscle of the insulin-resistant ZDF rat. This unique approach may hold promise as a pharmacological treatment against insulin resistance of skeletal muscle glucose disposal.  相似文献   

7.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

8.
Exercise training or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors can ameliorate glucose intolerance, insulin resistance of muscle glucose metabolism, and dyslipidemia associated with the obese Zucker rat. The purpose of the present study was to determine the interactions of exercise training and ACE inhibition (trandolapril) on these parameters in the obese Zucker rat. Animals were assigned to a sedentary control, a trandolapril-treated (1 mg. kg-1. day-1 for 6 wk), an exercise-trained (treadmill running for 6 wk), or a combined trandolapril-treated and exercise-trained group. Exercise training, alone or with trandolapril, significantly (P < 0. 05) increased peak O2 consumption by 31-34%. Similar decreases in fasting plasma insulin (34%) and free fatty acids (31%) occurred with exercise training alone or in combination with trandolapril. Compared with control, exercise training or trandolapril alone caused smaller areas under the curve (AUC) for glucose (12-14%) and insulin (28-33%) during an oral glucose tolerance test. The largest decreases in the glucose AUC (40%) and insulin AUC (53%) were observed in the combined group. Similarly, whereas exercise training or trandolapril alone improved maximally activated insulin-stimulated glucose transport in isolated epitrochlearis (26-34%) or soleus (39-41%) muscles, the greatest improvements in insulin action (67 and 107%, respectively) were seen in the combined group and were associated with similarly enhanced muscle GLUT-4 protein and total hexokinase levels. In conclusion, these results indicate combined exercise training and ACE inhibition improve oral glucose tolerance and insulin-stimulated muscle glucose transport to a greater extent than does either intervention alone.  相似文献   

9.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

10.
The purpose of this study was to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). One day after sciatic nerve sectioning, when decreases in the stimulation of soleus 2-deoxyglucose (2-DG) uptake by insulin (-51%, P less than 0.001), contractions (-29%, P less than 0.05), or insulin and contractions in combination (-40%, P less than 0.001) were observed, there was a slight (-18%, NS) decrease in GLUT-4 protein. By day 3 of denervation, stimulation of 2-DG uptake by insulin (-74%, P less than 0.001), contractions (-31%, P less than 0.001), or the two stimuli in combination (-59%, P less than 0.001), as well as GLUT-4 protein (-52%, P less than 0.001), was further reduced. Soleus muscle from hindlimb-suspended rats, which develops an enhanced capacity for insulin-stimulated glucose transport, showed muscle atrophy similar to denervated soleus but, in contrast, displayed substantial increases in GLUT-4 protein after 3 (+35%, P less than 0.05) and 7 days (+107%, P less than 0.001). These results indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. We conclude that muscle activity is an important factor in the regulation of GLUT-4 expression in skeletal muscle.  相似文献   

11.
The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9,trans-11-CLA (c9,t11-CLA) and trans-10,cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker (fa/fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced (P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides (r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.  相似文献   

12.
Alpha-lipoic acid mitigates insulin resistance in Goto-Kakizaki rats.   总被引:5,自引:0,他引:5  
Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant alpha -lipoic-acid (ALA, 100 mg/kg, i.p.) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.  相似文献   

13.
We have demonstrated previously that overactivity of the renin-angiotensin system (RAS) is associated with whole body and skeletal muscle insulin resistance in obese Zucker (fa/fa) rats. Moreover, this obesity-associated insulin resistance is reduced by treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor (type 1) blockers. However, it is currently unknown whether specific inhibition of renin itself, the rate-limiting step in RAS functionality, improves insulin action in obesity-associated insulin resistance. Therefore, the present study assessed the effect of chronic, selective renin inhibition using aliskiren on glucose tolerance, whole body insulin sensitivity, and insulin action on the glucose transport system in skeletal muscle of obese Zucker rats. Obese Zucker rats were treated for 21 days with either vehicle or aliskiren (50 mg/kg body wt ip). Renin inhibition was associated with a significant lowering (10%, P < 0.05) of resting systolic blood pressure and induced reductions in fasting plasma glucose (11%) and free fatty acids (46%) and homeostatic model assessment for insulin resistance (13%). Glucose tolerance (glucose area under the curve) and whole body insulin sensitivity (inverse of the glucose-insulin index) during an oral glucose tolerance test were improved by 15% and 16%, respectively, following chronic renin inhibition. Moreover, insulin-stimulated glucose transport activity in isolated soleus muscle of renin inhibitor-treated animals was increased by 36% and was associated with a 2.2-fold greater Akt Ser(473) phosphorylation. These data provide evidence that chronic selective inhibition of renin activity leads to improvements in glucose tolerance and whole body insulin sensitivity in the insulin-resistant obese Zucker rat. Importantly, chronic renin inhibition is associated with upregulation of insulin action on skeletal muscle glucose transport, and it may involve improved Akt signaling. These data support the strategy of targeting the RAS to improve both blood pressure regulation and insulin action in conditions of insulin resistance.  相似文献   

14.
Increasing evidence supports a negative role of glycogen synthase kinase-3 (GSK-3) in regulation of skeletal muscle glucose transport. We assessed the effects of chronic treatment of insulin-resistant, prediabetic obese Zucker (fa/fa) rats with a highly selective GSK-3 inhibitor (CT118637) on glucose tolerance, whole body insulin sensitivity, plasma lipids, skeletal muscle insulin signaling, and in vitro skeletal muscle glucose transport activity. Obese Zucker rats were treated with either vehicle or CT118637 (30 mg/kg body wt) twice per day for 10 days. Fasting plasma insulin and free fatty acid levels were reduced by 14 and 23% (P < 0.05), respectively, in GSK-3 inhibitor-treated animals compared with vehicle-treated controls. The glucose response during an oral glucose tolerance test was reduced by 18% (P < 0.05), and whole body insulin sensitivity was increased by 28% (P < 0.05). In vivo insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (50%) and IRS-1-associated phosphatidylinositol-3' kinase (79%) relative to fasting plasma insulin levels were significantly elevated (P < 0.05) in plantaris muscles of GSK-3 inhibitor-treated animals. Whereas basal glucose transport in isolated soleus and epitrochlearis muscles was unaffected by chronic GSK-3 treatments, insulin stimulation of glucose transport above basal was significantly enhanced (32-60%, P < 0.05). In summary, chronic treatment of insulin-resistant, prediabetic obese Zucker rats with a specific GSK-3 inhibitor enhances oral glucose tolerance and whole body insulin sensitivity and is associated with an amelioration of dyslipidemia and an improvement in IRS-1-dependent insulin signaling in skeletal muscle. These results provide further evidence that selective targeting of GSK-3 in muscle may be an effective intervention for the treatment of obesity-associated insulin resistance.  相似文献   

15.
The rates of muscle glucose uptake of lean and obese Zucker rats were assessed via hindlimb perfusion under basal conditions (no insulin), in the presence of a maximal insulin concentration (10 mU/ml), and after electrically stimulated muscle contraction in the absence of insulin. The perfusate contained 28 mM glucose and 7.5 microCi/mmol of 2-deoxy-D-[3H-(G)]glucose. Glucose uptake rates in the soleus (slow-twitch oxidative fibers), red gastrocnemius (fast-twitch oxidative-glycolytic fibers), and white gastrocnemius (fast-twitch glycolytic fibers) under basal conditions and after electrically stimulated muscle contraction were not significantly different between the lean and obese rats. However, the rate of glucose uptake during insulin stimulation was significantly lower for obese than for lean rats in all three fiber types. Significant correlations were found for insulin-stimulated glucose uptake and glucose transporter protein isoform (GLUT-4) content of soleus, red gastrocnemius, and white gastrocnemius of lean (r = 0.79) and obese (r = 0.65) rats. In contrast, the relationships between contraction-stimulated glucose uptake and muscle GLUT-4 content of lean and obese rats were negligible because of inordinately low contraction-stimulated glucose uptakes by the solei. These results suggest that maximal skeletal muscle glucose uptake of obese Zucker rats is resistant to stimulation by insulin but not to contractile activity. In addition, the relationship between contraction-stimulated glucose uptake and GLUT-4 content appears to be fiber-type specific.  相似文献   

16.
Exercise training has been found to reduce the muscle insulin resistance of the obese Zucker rat (fa/fa). The purpose of the present study was to determine whether this reduction in muscle insulin resistance was associated with an improvement in the glucose transport process and if it was fiber-type specific. Rats were randomly assigned to a sedentary or training group. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 days/wk, for 6-8 wk. The rate of muscle glucose transport was assessed in the absence of insulin and in the presence of a physiological (0.15 mU/ml), a submaximal (1.50 mU/ml), and a maximal (15.0 mU/ml) insulin concentration by determining the rate of 3-O-methyl-D-glucose (3-OMG) accumulation during hindlimb perfusion. The average 3-OMG transport rate of the red gastrocnemii (fast-twitch oxidative-glycolytic fibers) was significantly higher in the trained compared with the sedentary obese rats in the absence of insulin and in the presence of the three insulin concentrations. Significant improvements in 3-OMG transport were also observed in the plantarii (mixed fibers) of trained obese rats in the presence of 0, 0.15, and 15.0 mU/ml insulin. Training appeared to have little effect on the insulin-stimulated 3-OMG transport of the soleus (slow-twitch oxidative fibers) or white gastrocnemius (fast-twitch glycolytic fibers). The results suggest that the improvement in the muscle insulin resistance of the obese Zucker rat after moderate endurance training was associated with an improvement in the glucose transport process but that it was fiber-type specific.  相似文献   

17.
Male heterozygous TG(mREN2)27 rats (TGR) overexpress a murine renin transgene, display marked hypertension, and have insulin resistance of skeletal muscle glucose transport and insulin signaling. We have shown previously that voluntary exercise training by TGR improves insulin-mediated skeletal muscle glucose transport (Kinnick TR, Youngblood EB, O'Keefe MP, Saengsirisuwan V, Teachey MK, and Henriksen EJ. J Appl Physiol 93: 805-812, 2002). The present study evaluated whether this training-induced enhancement of muscle glucose transport is associated with upregulation of critical insulin signaling elements, including insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3. TGR remained sedentary or ran spontaneously in activity wheels for 6 wk, averaging 7.1 +/- 0.8 km/day by the end of week 3 and 4.3 +/- 0.5 km/day over the final week of training. Exercise training reduced total abdominal fat by 20% (P < 0.05) in TGR runners (2.64 +/- 0.01% of body weight) compared with sedentary TGR controls (3.28 +/- 0.01%). Insulin-stimulated (2 mU/ml) glucose transport activity in soleus muscle was 36% greater in TGR runners compared with sedentary TGR controls. However, the protein expression and functionality of tyrosine phosphorylation of insulin receptor and IRS-1, IRS-1 associated with the p85 regulatory subunit of phosphatidylinositol 3-kinase, and Ser473 phosphorylation of Akt were not altered by exercise training. Only insulin-stimulated glycogen synthase kinase-3beta Ser9 phosphorylation was increased (22%) by exercise training. These results indicate that voluntary exercise training in TGR can enhance insulin-mediated glucose transport in skeletal muscle, as well as reduce total abdominal fat mass. However, this adaptive response in muscle occurs independently of modifications in the proximal elements of the insulin signaling cascade.  相似文献   

18.
Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and are particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE inhibitors are associated with enhanced levels of the vasodilator bradykinin and decreased production of the vasoconstrictor and growth factor angiotensin II (ATII). In insulin-resistant conditions, ACE inhibitors can also enhance whole-body glucose disposal and glucose transport activity in skeletal muscle. This review will focus on the metabolic consequences of ACE inhibition in insulin resistance. At the cellular level, ACE inhibitors acutely enhance glucose uptake in insulin-resistant skeletal muscle via two mechanisms. One mechanism involves the action of bradykinin, acting through bradykinin B(2) receptors, to increase nitric oxide (NO) production and ultimately enhance glucose transport. A second mechanism involves diminution of the inhibitory effects of ATII, acting through AT(1) receptors, on the skeletal muscle glucose transport system. The acute actions of ACE inhibitors on skeletal muscle glucose transport are associated with upregulation of insulin signaling, including enhanced IRS-1 tyrosine phosphorylation and phosphatidylinositol-3-kinase activity, and ultimately with increased cell-surface GLUT-4 glucose transporter protein. Chronic administration of ACE inhibitors or AT(1) antagonists to insulin-resistant rodents can increase protein expression of GLUT-4 in skeletal muscle and myocardium. These data support the concept that ACE inhibitors can beneficially modulate glucose control in insulin-resistant states, possibly through a NO-dependent effect of bradykinin and/or antagonism of ATII action on skeletal muscle.  相似文献   

19.
Hypertension is often accompanied by insulin resistance of skeletal muscle glucose transport. The male heterozygous TG(mREN2)27 rat, which harbors a mouse transgene for renin, displays local elevations in the renin-angiotensin system and exhibits markedly elevated systolic blood pressure (SBP). The present study was undertaken to characterize insulin-stimulated skeletal muscle glucose transport in male heterozygous TG(mREN2)27 rats and to evaluate the effect of voluntary exercise training on SBP and skeletal muscle glucose transport. Compared with normotensive Sprague-Dawley rats, TG(mREN2)27 rats displayed a 53% elevation (P < 0.05) in SBP, a twofold increase in plasma free fatty acid levels, and an exaggerated insulin response during an oral glucose tolerance test. Moreover, insulin-mediated glucose transport (2-deoxyglucose uptake) in isolated epitrochlearis and soleus muscles of TG(mREN2)27 animals was 33 and 43% less, respectively, than in Sprague-Dawley controls. TG(mREN2)27 rats ran voluntarily for 6 wk and achieved daily running distances of 6-7 km over the final 3 wk. Training caused a 36% increase in peak aerobic capacity and a 16% reduction in resting SBP. Fasting plasma insulin (21%) and free fatty acid (34%) levels were reduced in the trained TG(mREN2)27 rats. Whole body glucose tolerance was improved in the trained TG(mREN2)27 rats and was associated with increases of 39 and 50% in insulin-mediated glucose transport in epitrochlearis and soleus muscles, respectively. Whole muscle GLUT-4 protein was increased in the soleus (23%), but not in the epitrochlearis, of trained TG(mREN2)27 rats. These data indicate that the male heterozygous TG(mREN2)27 rat is a model of both hypertension and insulin resistance. Importantly, both of these defects can be beneficially modified by voluntary exercise training.  相似文献   

20.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号