首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nipah virus (NiV) is the deadliest known paramyxovirus. Membrane fusion is essential for NiV entry into host cells and for the virus'' pathological induction of cell-cell fusion (syncytia). The mechanism by which the attachment glycoprotein (G), upon binding to the cell receptors ephrinB2 or ephrinB3, triggers the fusion glycoprotein (F) to execute membrane fusion is largely unknown. N-glycans on paramyxovirus glycoproteins are generally required for proper protein conformational integrity, transport, and sometimes biological functions. We made conservative mutations (Asn to Gln) at the seven potential N-glycosylation sites in the NiV G ectodomain (G1 to G7) individually or in combination. Six of the seven N-glycosylation sites were found to be glycosylated. Moreover, pseudotyped virions carrying these N-glycan mutants had increased antibody neutralization sensitivities. Interestingly, our results revealed hyperfusogenic and hypofusogenic phenotypes for mutants that bound ephrinB2 at wild-type levels, and the mutant''s cell-cell fusion phenotypes generally correlated to viral entry levels. In addition, when removing multiple N-glycans simultaneously, we observed synergistic or dominant-negative membrane fusion phenotypes. Interestingly, our data indicated that 4- to 6-fold increases in fusogenicity resulted from multiple mechanisms, including but not restricted to the increase of F triggering. Altogether, our results suggest that NiV-G N-glycans play a role in shielding virions against antibody neutralization, while modulating cell-cell fusion and viral entry via multiple mechanisms.  相似文献   

2.
The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where approximately 20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r(2) = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.  相似文献   

3.
Galectin-1 (gal-1), an endogenous lectin secreted by a variety of cell types, has pleiotropic immunomodulatory functions, including regulation of lymphocyte survival and cytokine secretion in autoimmune, transplant disease, and parasitic infection models. However, the role of gal-1 in viral infections is unknown. Nipah virus (NiV) is an emerging pathogen that causes severe, often fatal, febrile encephalitis. The primary targets of NiV are endothelial cells. NiV infection of endothelial cells results in cell-cell fusion and syncytia formation triggered by the fusion (F) and attachment (G) envelope glycoproteins of NiV that bear glycan structures recognized by gal-1. In the present study, we report that NiV envelope-mediated cell-cell fusion is blocked by gal-1. This inhibition is specific to the Paramyxoviridae family because gal-1 did not inhibit fusion triggered by envelope glycoproteins of other viruses, including two retroviruses and a pox virus, but inhibited fusion triggered by envelope glycoproteins of the related Hendra virus and another paramyxovirus. The physiologic dimeric form of gal-1 is required for fusion inhibition because a monomeric gal-1 mutant had no inhibitory effect on cell fusion. gal-1 binds to specific N-glycans on NiV glycoproteins and aberrantly oligomerizes NiV-F and NiV-G, indicating a mechanism for fusion inhibition. gal-1 also increases dendritic cell production of proinflammatory cytokines such as IL-6, known to be protective in the setting of other viral diseases such as Ebola infections. Thus, gal-1 may have direct antiviral effects and may also augment the innate immune response against this emerging pathogen.  相似文献   

4.
As a preliminary to the localization of the receptor-binding site(s) on the Nipah virus (NiV) glycoprotein (NiV-G), we have undertaken the identification of NiV-G residues that play a role in fusion promotion. To achieve this, we have used two strategies. First, as NiV and Hendra virus (HeV) share a common receptor and their cellular tropism is similar, we hypothesized that residues functioning in receptor attachment could be conserved between their respective G proteins. Our initial strategy was to target charged residues (which can be expected to be at the surface of the protein) conserved between the NiV-G and HeV-G globular heads. Second, we generated NiV variants that escaped neutralization by anti-NiV-G monoclonal antibodies (MAbs) that neutralize NiV both in vitro and in vivo, likely by blocking receptor attachment. The sequencing of such "escape mutants" identified NiV-G residues present in the epitopes to which the neutralizing MAbs are directed. Residues identified via these two strategies whose mutation had an effect on fusion promotion were localized on a new structural model for the NiV-G protein. Our results suggest that seven NiV-G residues, including one (E533) that was identified using both strategies, form a contiguous site on the top of the globular head that is implicated in ephrinB2 binding. This site commences near the shallow depression in the center of the top surface of the globular head and extends to the rim of the barrel-like structure on the top loops of beta-sheet 5. The topology of this site is strikingly similar to that proposed to form the SLAM receptor site on another paramyxovirus attachment protein, that of the measles virus hemagglutinin.  相似文献   

5.
Nipah virus targets human endothelial cells via NiV-F and NiV-G envelope glycoproteins, resulting in endothelial syncytia formation and vascular compromise. Endothelial cells respond to viral infection by releasing innate immune effectors, including galectins, which are secreted proteins that bind to specific glycan ligands on cell surface glycoproteins. We demonstrate that galectin-1 reduces NiV-F mediated fusion of endothelial cells, and that endogenous galectin-1 in endothelial cells is sufficient to inhibit syncytia formation. Galectin-1 regulates NiV-F mediated cell fusion at three distinct points, including retarding maturation of nascent NiV-F, reducing NiV-F lateral mobility on the plasma membrane, and directly inhibiting the conformational change in NiV-F required for triggering fusion. Characterization of the NiV-F N-glycome showed that the critical site for galectin-1 inhibition is rich in glycan structures known to bind galectin-1. These studies identify a unique set of mechanisms for regulating pathophysiology of NiV infection at the level of the target cell.  相似文献   

6.
Conformational changes in the glycoproteins of enveloped viruses are critical for membrane fusion, which enables viral entry into cells and the pathological cell-cell fusion (syncytia) associated with some viral infections. However, technological capabilities for identifying viral glycoproteins and their conformational changes on actual enveloped virus surfaces are generally scarce, challenging, and time-consuming. Our model, Nipah virus (NiV), is a syncytium-forming biosafety level 4 pathogen with a high mortality rate (40 to 75%) in humans. Once the NiV attachment glycoprotein (G) (NiV-G) binds the cell receptor ephrinB2 or -B3, G triggers conformational changes in the fusion glycoprotein (F) that result in membrane fusion and viral entry. We demonstrate that confocal micro-Raman spectroscopy can, within minutes, simultaneously identify specific G and F glycoprotein signals and receptor-induced conformational changes in NiV-F on NiV virus-like particles (VLPs). First, we identified reproducible G- and F-specific Raman spectral features on NiV VLPs containing M (assembly matrix protein), G, and/or F or on NiV/vesicular stomatitis virus (VSV) pseudotyped virions via second-derivative transformations and principal component analysis (PCA). Statistical analyses validated our PCA models. Dynamic temperature-induced conformational changes in F and G or receptor-induced target membrane-dependent conformational changes in F were monitored in NiV pseudovirions in situ in real time by confocal micro-Raman spectroscopy. Advantageously, Raman spectroscopy can identify specific protein signals in relatively impure samples. Thus, this proof-of-principle technological development has implications for the rapid identification and biostability characterization of viruses in medical, veterinary, and food samples and for the analysis of virion glycoprotein conformational changes in situ during viral entry.  相似文献   

7.
Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope''s natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of “stemness” (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼106 IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2+ cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2+ populations in vivo or in vitro.  相似文献   

8.
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-Å resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.  相似文献   

9.
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.  相似文献   

10.
EphrinB2 was recently discovered as a functional receptor for Nipah virus (NiV), a lethal emerging paramyxovirus. Ephrins constitute a class of homologous ligands for the Eph class of receptor tyrosine kinases and exhibit overlapping expression patterns. Thus, we examined whether other ephrins might serve as alternative receptors for NiV. Here, we show that of all known ephrins (ephrinA1-A5 and ephrinB1-B3), only the soluble Fc-fusion proteins of ephrinB3, in addition to ephrinB2, bound to soluble NiV attachment protein G (NiV-G). Soluble NiV-G bound to cell surface ephrinB3 and B2 with subnanomolar affinities (Kd = 0.58 nM and 0.06 nM for ephrinB3 and B2, respectively). Surface plasmon resonance analysis indicated that the relatively lower affinity of NiV-G for ephrinB3 was largely due to a faster off-rate (K(off) = 1.94 x 10(-3) s(-1) versus 1.06 x 10(-4) s(-1) for ephrinB3 and B2, respectively). EphrinB3 was sufficient to allow for viral entry of both pseudotype and live NiV. Soluble ephrinB2 and B3 were able to compete for NiV-envelope-mediated viral entry on both ephrinB2- and B3-expressing cells, suggesting that NiV-G interacts with both ephrinB2 and B3 via an overlapping site. Mutational analysis indicated that the Leu-Trp residues in the solvent exposed G-H loop of ephrinB2 and B3 were critical determinants of NiV binding and entry. Indeed, replacement of the Tyr-Met residues in the homologous positions in ephrinB1 with Leu-Trp conferred NiV receptor activity to ephrinB1. Thus, ephrinB3 is a bona fide alternate receptor for NiV entry, and two residues in the G-H loop of the ephrin B-class ligands are critical determinants of NiV receptor activity.  相似文献   

11.
Paramyxoviruses initiate entry through the concerted action of the tetrameric attachment glycoprotein (HN, H, or G) and the trimeric fusion glycoprotein (F). The ectodomains of HN/H/G contain a stalk region important for oligomeric stability and for the F triggering resulting in membrane fusion. Paramyxovirus HN, H, and G form a dimer-of-dimers consisting of disulfide-linked dimers through their stalk domain cysteines. The G attachment protein stalk domain of the highly pathogenic Nipah virus (NiV) contains a distinct but uncharacterized cluster of three cysteine residues (C146, C158, C162). On the basis of a panoply of assays, we report that C158 and C162 of NiV-G likely mediate covalent subunit dimerization, while C146 mediates the stability of higher-order oligomers. For HN or H, mutation of stalk cysteines attenuates but does not abrogate the ability to trigger fusion. In contrast, the NiV-G stalk cysteine mutants were completely deficient in triggering fusion, even though they could still bind the ephrinB2 receptor and associate with F. Interestingly, all cysteine stalk mutants exhibited constitutive exposure of the Mab45 receptor binding-enhanced epitope, previously implicated in F triggering. The enhanced binding of Mab45 to the cysteine mutants relative to wild-type NiV-G, without the addition of the receptor, implicates the stalk cysteines in the stabilization of a pre-receptor-bound conformation and the regulation of F triggering. Sequence alignments revealed that the stalk cysteines were adjacent to a proline-rich microdomain unique to the Henipavirus genus. Our data propose that the cysteine cluster in the NiV-G stalk functions to maintain oligomeric stability but is more importantly involved in stabilizing a unique microdomain critical for triggering fusion.  相似文献   

12.
Cellular entry of paramyxoviruses requires the coordinated action of both the attachment (G/H/HN) and fusion (F) glycoproteins, but how receptor binding activates G to trigger F-mediated fusion during viral entry is not known. Here, we identify a receptor (ephrinB2)-induced allosteric activation site in Nipah virus (NiV) G involved in triggering F-mediated fusion. We first generated a conformational monoclonal antibody (monoclonal antibody 45 (Mab45)) whose binding to NiV-G was enhanced upon NiV-G-ephrinB2 binding. However, Mab45 also inhibited viral entry, and its receptor binding-enhanced (RBE) epitope was temperature-dependent, suggesting that the Mab45 RBE epitope on G may be involved in triggering F. The Mab45 RBE epitope was mapped to the base of the globular domain (β6S4/β1H1). Alanine scan mutants within this region that did not exhibit this RBE epitope were also non-fusogenic despite their ability to bind ephrinB2, oligomerize, and associate with F at wild-type (WT) levels. Although circular dichroism revealed conformational changes in the soluble ectodomain of WT NiV-G upon ephrinB2 addition, no such changes were detected with soluble RBE epitope mutants or short-stalk G mutants. Additionally, WT G, but not a RBE epitope mutant, could dissociate from F upon ephrinB2 engagement. Finally, using a biotinylated HR2 peptide to detect pre-hairpin intermediate formation, a cardinal feature of F-triggering, we showed that ephrinB2 binding to WT G, but not the RBE-epitope mutants, could trigger F. In sum, we implicate the coordinated interaction between the base of NiV-G globular head domain and the stalk domain in mediating receptor-induced F triggering during viral entry.The paramyxoviruses comprise a group of important human pathogens, such as measles, mumps, human parainfluenza viruses, and the highly pathogenic Nipah (NiV)4 and Hendra (HeV) viruses. NiV infections have a mortality rate in humans of up to 75%, and NiV is classified as a BSL4 pathogen because of its bio- or agro-terrorism potential (1). The efficacy of entry inhibitors targeted against HIV suggests that a better understanding of Paramyxovirus entry and fusion will facilitate similarly efficacious antiviral therapeutics.Although past studies have identified regions in either the fusion (F) or attachment (G/H/HN) glycoproteins that are important for membrane fusion or F-G/H/HN association (210), the region(s) in G important for receptor-activated triggering of F-mediated fusion remains unknown. Current models of Paramyxovirus membrane fusion posit that receptor binding to the attachment glycoprotein (G, H, or HN) triggers a conformational cascade in the fusion protein (F). Such F-triggering results in fusion peptide (FP) exposure, which involves formation of a pre-hairpin intermediate and subsequent six-helix bundle formation (11). The energy released upon refolding into the stable six-helix bundle ground state is what drives the fusion of the viral and host-cell membranes. These are common functional and structural features responsible for membrane fusion for all enveloped viruses regardless of whether the fusion protein has predominantly trimeric α-helical coiled-coil (Class I), β (Class II), or a combination of α and β (Class III) core structures (12). Important human pathogens such as the HIV, influenza, and various paramyxoviruses have Class I fusion proteins, and their similar structural features point to similar membrane fusion mechanisms (11, 12). Besides sharing trimeric coiled-coil structures, they are synthesized as precursors that are cleaved into a metastable conformation; cleavage generates a new hydrophobic N terminus FP that gets released and inserted into the target cell membrane upon triggering (11, 12). Class I fusion proteins have two heptad repeat regions, HR1 and HR2, at their N and C termini, respectively, that fold up onto each other during six-helix bundle formation to bring about merging of target cell and viral membranes (12). For Paramyxovirus F proteins, the C-terminal HR2 region is generally thought to be pre-formed, but the N-terminal HR1 region is formed only upon F-triggering and FP insertion (11, 13). The formation of this trimeric HR1 core just before six-helix bundle formation, is known as the pre-hairpin intermediate.Despite their common features, viral fusion proteins vary in their detailed structures, triggering factors, and number of viral surface proteins involved. For paramyxoviruses, receptor binding and fusion functions are carried out by two distinct transmembrane proteins (attachment (G, H, or HN) and fusion (F) proteins, respectively), and with few exceptions both are required for membrane fusion. The underlying mechanism of fusion triggering by the attachment protein may vary depending on their use of protein versus carbohydrate receptors (14). For example, we and others have observed an inverse correlation between fusogenicity of the F protein and the avidity of the F/G or F/H interactions for NiV and measles virus (2, 3, 5, 15, 16), both of which use protein-based receptors; however, for Newcastle disease virus, a glycan-using Paramyxovirus, there seems to be a direct correlation between fusogenicity and the avidity of F/HN interactions (8).For the paramyxoviruses, the early steps in the fusion cascade, particularly how H/HN “triggers” F, are not well understood, and the region(s) in H/HN responsible for F triggering remains unclear, although the stalk domain of H/HN appears to be important for F triggering or for interaction with F (58). For NiV, the G attachment glycoprotein binds either the ephrinB2 (B2) or ephrinB3 (B3) protein receptors (1719), but it is not known how receptor engagement induces G to undergo the allosteric changes involved in triggering F. However, by homology to H or HN, it is likely that the stalk domain in NiV-G is also involved in F-triggering (20). Here we analyze the early steps in the fusion cascade for NiV and identify a specific region in NiV-G distinct from the receptor binding site that is involved in 1) B2-induced changes that trigger FP exposure in F, 2) modulating the avidity of F/G interactions resulting in displacement of F from G, and 3) transducing receptor-induced membrane fusion. Our results offer testable hypotheses as to whether this model of fusion cascade holds true for other paramyxoviruses that use protein-based receptors.  相似文献   

13.
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.  相似文献   

14.
尼帕病毒F糖蛋白在重组牛痘病毒中的表达及鉴定   总被引:3,自引:0,他引:3  
尼帕病毒(NiV)F蛋白在病毒侵入细胞和诱导中和抗体等方面具有重要作用。通过over-lapping PCR合成密码子优化的F蛋白基因构建了表达NiV F蛋白的重组牛痘病毒(WR株)rWR-NiV-F。利用兔抗NiV血清为检测抗体,通过间接免疫荧光(IFA)检测到了F蛋白在重组病毒感染细胞中的表达。SDS-PAGE和Western blot检测证明重组蛋白F0被裂解为F1和F2。以rWR-NiV-F感染瞬时转染共表达NiV受体结合囊膜糖蛋白G的BHK细胞,可诱导细胞膜融合及合包体形成,证明该重组病毒表达F蛋白保持良好的抗原性及生物学活性,为NiV诊断及重组活载体疫苗研究奠定了重要基础。  相似文献   

15.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

16.
During viral entry, the paramyxovirus fusion (F) protein fuses the viral envelope to a cellular membrane. Similar to other class I viral fusion glycoproteins, the F protein has two heptad repeat regions (HRA and HRB) that are important in membrane fusion and can be targeted by antiviral inhibitors. Upon activation of the F protein, HRA refolds from a spring-loaded, crumpled structure into a coiled coil that inserts a hydrophobic fusion peptide into the target membrane and binds to the HRB helices to form a fusogenic hairpin. To investigate how F protein conformational changes are regulated, we mutated in the Sendai virus F protein a highly conserved 10-residue sequence in HRA that undergoes major structural changes during protein refolding. Nine of the 15 mutations studied caused significant defects in F protein expression, processing, and fusogenicity. Conversely, the remaining six mutations enhanced the fusogenicity of the F protein, most likely by helping spring the HRA coil. Two of the residues that were neither located at "a" or "d" positions in the heptad repeat nor conserved among the paramyxoviruses were key regulators of the folding and fusion activity of the F protein, showing that residues not expected to be important in coiled-coil formation may play important roles in regulating membrane fusion. Overall, the data support the hypothesis that regions in the F protein that undergo dramatic changes in secondary and tertiary structure between the prefusion and hairpin conformations regulate F protein expression and activation.  相似文献   

17.
Most paramyxovirus fusion (F) proteins require the coexpression of the homologous attachment (HN) protein to promote membrane fusion, consistent with the existence of a virus-specific interaction between the two proteins. Analysis of the fusion activities of chimeric HN proteins indicates that the stalk region of the HN spike determines its F protein specificity, and analysis of a panel of site-directed mutants indicates that the F-interactive site resides in this region. Here, we use the addition of oligosaccharides to further explore the role of the HN stalk in the interaction with F. N-glycans were individually added at several positions in the stalk to determine their effects on the activities of HN, as well as its structure. N-glycan addition at positions 69 and 77 in the stalk specifically blocks fusion and the HN-F interaction without affecting either HN structure or its other activities. N-glycans added at other positions in the stalk modulate activities that reside in the globular head of HN. This correlates with an alteration of the tetrameric structure of the protein, as indicated by sucrose gradient sedimentation analyses. Finally, N-glycan addition in another region of HN (residues 124 to 152), predicted by a peptide-based analysis to mediate the interaction with F, does not significantly reduce the level of fusion, arguing strongly against this site being part of the F-interactive domain in HN. Our data support the idea that the F-interactive site on HN is defined by the stalk region of the protein.  相似文献   

18.
Sun Q  Zhao L  Song Q  Wang Z  Qiu X  Zhang W  Zhao M  Zhao G  Liu W  Liu H  Li Y  Liu X 《Glycobiology》2012,22(3):369-378
N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.  相似文献   

19.
Abstract

Nipah Virus (NiV) is a newly emergent paramyxovirus that has caused various outbreaks in Asian countries. Despite its acute pathogenicity and lack of approved therapeutics for human use, there is an urgent need to determine inhibitors against NiV. Hence, this work includes prospection of potential entry inhibitors by implementing an integrative structure- and network-based drug discovery approach. FDA-approved drugs were screened against attachment glycoprotein (NiV-G, PDB: 2VSM), one of the prime targets to inhibit viral entry, using a molecular docking approach that was benchmarked both on CCDC/ASTEX and known NIV-G inhibitor set. The predicted small molecules were prioritized on the basis of topological analysis of the chemical-protein interaction network, which was inferred by integrating the drug-target network, NiV-human interaction network, and human protein-protein interaction network. A total of 17 drugs were predicted to be NiV-G inhibitors using molecular docking studies that were further prioritized to 3 novel leads???Nilotinib, Deslanoside and Acetyldigitoxin???on the basis of topological analysis of inferred chemical-protein interaction network. While Deslanoside and Acetyldigitoxin belong to an already known class of anti-NiV inhibitors, Nilotinib belongs to Benzenoids chemical class that has not been reported hitherto for developing anti-NiV inhibitors. These identified drugs are expected to be successful in further experimental evaluation and therefore could be used for anti-Nipah drug discovery. Apart, we also obtained various insights into the underlying chemical-protein interaction network, based on which several important network nodes were predicted. The applicability of our proposed approach was also demonstrated by prospecting for anti-NiV phytochemicals on an independent dataset.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
Henipavirus is a new genus of Paramyxoviridae that uses protein-based receptors (ephrinB2 and ephrinB3) for virus entry. Paramyxovirus entry requires the coordinated action of the fusion (F) and attachment viral envelope glycoproteins. Receptor binding to the attachment protein triggers F to undergo a conformational cascade that results in membrane fusion. The accumulation of structural and functional studies on many paramyxoviral fusion and attachment proteins, including the recent elucidation of structures of Nipah virus (NiV) and Hendra virus (HeV) G glycoproteins bound and unbound to cognate ephrinB receptors, indicate that henipavirus entry and fusion could differ mechanistically from paramyxoviruses that use glycan-based receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号