首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic maltosyl-maltose [CMM, cyclo-[-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->]], a novel cyclic tetrasaccharide, has a unique structure. Its four glucose residues are joined by alternate alpha-1,4 and alpha-1,6 linkages. CMM is synthesized from starch by the action of 6-alpha-maltosyltransferase from Arthrobacter globiformis M6. Recently, we determined the mechanism of extracellular synthesis of CMM, but the degrading pathway of the saccharide remains unknown. Hence we tried to identify the enzymes involved in the degradation of CMM to glucose from the cell-free extract of the strain, and identified CMM hydrolase (CMMase) and alpha-glucosidase as the responsible enzymes. The molecular mass of CMMase was determined to be 48.6 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and 136 kDa by gel filtration column chromatography. The optimal pH and temperature for CMMase activity were 6.5 and 30 degrees C. The enzyme remained stable from pH 5.5 to 8.0 and up to 25 degrees C. CMMase hydrolyzed CMM to maltose via maltosyl-maltose as intermediates, but it did not hydrolyze CMM to glucose, suggesting that it is a novel hydrolase that hydrolyzes the alpha-1,6-linkage of CMM. The molecular mass of alpha-glucosidase was determined to be 60.1 kDa by SDS-PAGE and 69.5 kDa by gel filtration column chromatography. The optimal pH and temperature for alpha-glucosidase activity were 7.0 and 35 degrees C. The enzyme remained stable from pH 7.0 to 9.5 and up to 35 degrees C. alpha-Glucosidase degraded maltosyl-maltose to glucose via panose and maltose as intermediates, but it did not degrade CMM. Furthermore, when CMMase and alpha-glucosidase existed simultaneously in a reaction mixture containing CMM, glucose was detected as the final product. It was found that CMM was degraded to glucose by the synergistic action of CMMase and alpha-glucosidase.  相似文献   

2.
Extracellular xylanase (EC 3.2.1.8) from Streptomyces sp. K37 was purified 33.53 by ultrafiltration and cation exchange chromatography followed by gel filtration chromatography. The optimum pH and temperature for purified xylanase were found to be pH 6.0 and 60 degrees C. The Km and V(max) values of the purified xylanase were 15.4 mg ml(-1) and 0.67 micromole reducing sugar min(-1) ml(-1). High performance liquid chromatography (HPLC) gel filtration of the purified xylanase eluted xylanase activity as a peak corresponding to the molecular weight of about 24.3 kDa while the molecular weight determined by SDS-PAGE was found to be 26.4 kDa. The purified xylanase of Streptomyces sp. K37 was found to be endoxylanase and non arabinose liberating enzyme and was highly glycosylated (73.97%).  相似文献   

3.
Separation of a commercial preparation of Chromobacterium viscosum by hydrophobic interaction chromatography yields two active fractions, one corresponding to a lipase of 33.0 ± 1.0 kDa by SDS-PAGE and the other to a high molecular weight aggregate (> 250 kDa) of the lipase with some impurities absorbing at 436 nm. Partial disaggregation of this complex occurs on gel filtration chromatography in the presence of 1% (w/v) CHAPS. On gel filtration under non reducing conditions the lipase behaves like a 17 kDa protein; in the presence of a strong denaturant and of a reducing agent a molecular size of 36 kDa is obtained, in accordance with SDS-PAGE results.  相似文献   

4.
Aqueous ethanol extracts from brown seaweed were found to contain substances inhibiting endo-(1-->3)-beta-D-glucanases, the digestive enzymes of marine mollusks. The inhibitors were detected in 70% of the brown seaweeds investigated. An irreversible protein inhibitor with high specificity for endo-(1-->3)-beta-D-glucanases of marine mollusks was isolated from the brown seaweed, Laminaria cichorioides. As determined by gel filtration, the molecular weight of the inhibitor was 46 kDa. The value of [I]50 (10(-8) M) for the inhibitor was comparable with the corresponding value for natural alpha-amylase inhibitors from terrestrial plants. Chemical modification results indicated that tryptophan, dicarboxylic acid, histidine and probably tyrosine residues of inhibitor molecule are important for interaction of the inhibitor with the enzyme.  相似文献   

5.
The glycoprotein alpha-1-proteinase inhibitor (alpha-1-PI) is a member of the serpin super family that causes rapid and irreversible inhibition of redundant serine protease activity. A homogenous preparation of ovine alpha-1-PI, a 60 kDa protein was obtained by serially subjecting ovine serum to 40-70% (NH(4))(2)SO(4) precipitation, Blue Sepharose, size-exclusion, and concanavalin-A chromatography. Extensive insights into the trypsin, chymotrypsin, and elastase interaction with ovine alpha-1-PI, point towards the involvement of Phe(350) besides the largely conserved Met(356) in serine protease recognition and consequent inhibition. The N-terminal of C-terminal peptides cleaved on interaction with elastase, trypsin, and chymotrypsin prove the presence of diffused sub-sites in the vicinity of Met(356) and the strategically positioned Pro anchored peptide stretch. Further, human alpha-1-PI is more thermolabile compared to ovine alpha-1-PI, higher thermolability is mainly attributed to poorer glycosylation. The enzymatic deglycosylation of human and ovine alpha-1-PI results in diminished thermostability of the inhibitors, with sharp decrease in thermal transition temperatures but retaining their inhibitory potency. Homology modeling of the deduced amino acid sequence of ovine alpha-1-PI using the human alpha-1-PI template has been used to explain the observed inhibitor-protease interactions.  相似文献   

6.
Two trypsin inhibitors from acid-treated buffalo seminal plasma were purified by gel filtration and affinity chromatography. These acid-stable trypsin inhibitors having charge heterogeneity were homogeneous with respect to size as revealed by gel filtration and SDS-PAGE. Gel filtration data suggest molecular weight value of 9,900 Da for inhibitor I and 10,900 Da for inhibitor II. Molecular weight estimated by SDS-PAGE was found to be 10,600 Da and 11,200 Da for inhibitors I and II, respectively. The hydrodynamic properties such as Stokes radii (1.58 nm and 1.62 nm); intrinsic viscosity (2.5725 ml/g and 2.5025 ml/g) and diffusion coefficient (13.499 x 10(-11) m2/sec. and 13.166X10(-11) m2/sec) respectively for inhibitor I and II were determined by analytical gel filtration. These inhibitors were fairly thermostable and could not be stained by PAS reagent. Both the inhibitors were found to inhibit buffalo acrosin but not bovine chymotrypsin.  相似文献   

7.
A Ca2+-independent sialic acid-specific lectin from two developmental stages of human placenta was similarly purified to apparent homogeneity by DEAE-cellulose chromatography, affinity chromatography on bovine submaxillary mucin, and gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration disclosed a molecular mass of 53 kDa. The specificity of the lectin for O-acetylsialic acids was substantiated by the dependence of hemagglutination on the presence of acetylated sialic acids on the surface of mammalian erythrocytes of various sources, by hapten inhibition in hemagglutination assays with protease-treated rabbit erythrocytes and by hapten inhibition of binding of labeled N-acetylneuraminic acid-bovine serum albumin to the lectin in a solid-phase assay. Bovine and equine submaxillary mucins that contain 9(7,8)-O-acetyl and 4-O-acetylsialic acids were potent inhibitors in contrast to the non-acetylated sialic acids of ovine submaxillary mucin. Absence of inhibitory efficiency of other negatively charged substances like phosphorylated sugars, glucuronic acid, heparin, or oligodeoxynucleotides emphasized the importance of structural features instead of simple ionic interaction. In the presence of acetylation, the pattern of inhibition by gangliosides in the solid-phase assay indicated a preference to alpha-2,8- or alpha-2,6-linked sialic acids in comparison to alpha-2,3-linked moieties. Chemical modification of the lectin by group-specific reagents allowed to emphasize the role of primarily lysine residues, but also, although less pronounced, arginine, tryptophan, and carboxyl groups for ligand binding and/or maintenance of the active conformational state. Application of reagents, specific for histidine or tyrosine residues, failed to affect lectin activity.  相似文献   

8.
beta-Galactosidase (EC: 3.2.1.23), one of the glycosidases detected in Erythrina indica seeds, was purified to 135 fold. Amongst the four major glycosidases detected beta-galactosidase was found to be least glycosylated, and was not retained by Con-A CL Seralose affinity matrix. A homogenous preparation of the enzyme was obtained by ion-exchange chromatography, followed by gel filtration. The enzyme was found to be a dimmer with a molecular weight of 74 kDa and 78 kDa, by gel filtration and SDS-PAGE, respectively. The optimum pH and optimum temperature for enzyme activity were 4.4 and 50 degrees C, respectively. The enzyme showed a K(m) value of 2.6 mM and V(max) of 3.86 U/mg for p-nitrophenyl-beta-D-galactopyranoside as substrate and was inhibited by Zn(2+) and Hg(2+). The enzyme activity was regulated by feed back inhibition as it was found to be inhibited by beta-D-galactose. Chemical modification studies revealed involvement of tryptophan and histidine for enzyme activity. Involvement of tryptophan was also supported by fluorescence studies and one tryptophan was found to be present in the active site of beta-galactosidase. Circular dichroism studies revealed 37% alpha helix, 27% beta sheet and 38% random coil in the secondary structure of the purified enzyme.  相似文献   

9.
Homogeneous phosphoglycerate kinase from bovine liver possesses a maximum ultraviolet absorption at 278 nm (A 1%,1Cm 280 equals 6.7; Amax/Amin equals 2.26; e280 equals 31.5 mM(-1) X cm(-1). The enzyme consists of about 420 amino-acid residues and is a slightly acidic protein with an isoelectric point of 6.5 as expected from amino-acid analysis. The most notable features of the chemical composition are two tryptophan, 12 methionine and four half-cystine residues per enzyme molecule. Although phosphoglycerate kinases from mammalian tissues are partially similar to each other, clear differences in serine, glutamic acid, glycine, cysteine, valine, leucine, tyrosine, tryptophan and arginine contents were found. Fingerprinting and column chromatography of tryptic digests of the S-carboxymethylated protein confirm the data of amino-acid analysis. Liver phosphoglycerate kinase is inactivated when modified with either p-chloromercuribenzoate or 5,5'dithio-bis(2-nitrobenzoic acid) (Nbs2). The enzyme has two thiol groups available for reaction with Nbs2 under denaturing conditions, one of which is essential for catalysis. After reduction by NaBH4 four cysteine residues per molecule were determined with Nbs2, sugessting the presence of a disulfide bridge. Using sedimentation equilibrium studies, the molecular weight was found to be 49600. Gel filtration yielded values of 43000-50000. By analytical dodecylsulfate-polyacrylamide gel electrophoresis a molecular weight of 45600 was estimated. Inconsistent with these results in the value 37500 obtained by thin-layer gel chromatography in 6 M guanidine-HCl. Sedimentation velocity experiments revealed a sedimentation coefficient s20,w equals 3.4 S. The Stokes radius was 2.77 nm, the partial specific volume v 0.747 ml x g(-1). The diffusion coefficient was found to be 76.9 mum2 x s(-1) by analytical gel filtration. From these data a molecular weight of 44000 was calculated. Other physical constants of bovine-liver phosphoglycerate kinase are: frictional ratio f/f0 equals 1.18, axial ratio equals 3.3, maximal degree of hydration equals 0.1 g per g of protein. Bovine-layer phosphoglycerate kinase could not be dissociated into smaller subunits by treatments which have caused dissociation of various other proteins (8 M urea, 6 M guanidine-HCl, dodecyl sulfate, carboxymethylation, maleylation). All experiments strongly support the lack of subunit structure of the enzyme. Some characteristics of bovine-liver phosphoglycerate kinase are compared with the corresponding proteins from rabbit muscle, yeast and human erythrocytes.  相似文献   

10.
An ammonium sulphate fraction (20–60%) of bifunctional amylase/protease inhibitor from ragi (Eleusine coracana) was purified by affinity chromatography to give 6.59-fold purity with 81.48% yield. The same ammonium sulphate fraction was also subjected to ion exchange chromatography and was purified 4.28-fold with 75.95% yield. The ion exchange fraction was subjected to gel filtration and the inhibitor was purified to 6.67-fold with 67.36% yield. Further sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed to check the homogeneity of purified amylase/trypsin inhibitor obtained through affinity, ion exchange and gel chromatography. The molecular weight of the inhibitor was found to be 14 kDa. This purified inhibitor was used as affinity ligand for the purification of a commercial preparation of pancreatic amylase.  相似文献   

11.
A new low-molecular mass cysteine proteinase inhibitor (CPI) was purified from the cytosol of peripheral pig leukocytes. The isolation procedure included DEAE chromatography, Sephadex G-100 gel filtration and fast-protein liquid chromatography on Mono Q. The procedure resulted in the isolation of a homogeneous protein with a molecular mass of approximately 12 kDa and a pI of 4.8. The amino terminus is blocked. The amino-acid composition and the sequence of the C-terminal part of the molecule are suggestive of a new family of cystatins. The CPI was found to be a tight-binding inhibitor of both papain and cathepsin L, with Ki values of 0.1 nM and 1 nM, respectively.  相似文献   

12.
A Guzdek  J Potempa  A Dubin  J Travis 《FEBS letters》1990,272(1-2):125-127
Variant forms of human alpha-1-proteinase inhibitor (alpha-1-PI), obtained by the treatment of human Hep G2 cells with specific inhibitors of glycosylation were tested for both inhibitory activity and heat stability. All were found to have the same second-order association rate with human neutrophil elastase, indicating a lack of importance of the carbohydrate moiety. In contrast, incompletely glycosylated forms of alpha-1-PI were found to be heat sensitive relative to the mature protein, suggesting a role for carbohydrate in protein stabilization.  相似文献   

13.
Alpha-1-protease inhibitor, (alpha-1-PI), the major inhibitor of serine proteases in human plasma, has three asparagine-linked carbohydrate chains located at positions 46, 83 and 247. The protein has a microheterogeneity which is seen on isoelectric focusing and which is a result of whether the various carbohydrate chains are in bi- or tri-antennary forms. Tri-antennary enriched forms of alpha-1-PI are associated with inflammation. By using a combination of three methods, reductive salting out, Sepharose-bound Concanavalin A affinity chromatography, and Sepharose-bound anhydrochymotrypsin, biologically active alpha-1-PI was obtained in tri-antennary enriched and tri-antennary depleted forms. These preparations should be useful for studies on the physiological role of the carbohydrate moiety in alpha-1-PI.  相似文献   

14.
A novel thermolabile beta-2 macroglycoprotein ('thermolabile substance' (TLS) or 'Hakata antigen' (HA], which was detected by the precipitating (auto) antibodies of patients with systemic lupus erythematosus, was isolated and characterized. The purification procedure entailed the following steps: isoelectric precipitation in the range between pH 5.2-6.1, hydroxyapatite absorption chromatography, 35% saturated ammonium sulfate precipitation, Sephadex G-200 gel filtration, Pevikon block electrophoresis, lentil lectin affinity chromatography and immobilized rabbit anti-human whole serum IgG column chromatography. Utilizing these procedures, 0.1 mg of HA was purified from 3 1 of pooled human serum. The molecular mass of HA was determined as 650 kDa by Sepharose 4B gel filtration. On SDS-PAGE analysis, HA showed a single band at 35 kDa under reduced conditions and numerous ladder bands between 35 kDa to more than 300 kDa under nonreduced conditions. On analytical ultracentrifugation, HA gave a molecular mass of 520 kDa with a single meniscus and a sedimentation constant of 12.0. The amino acid and carbohydrate analysis of reduced and S-pyridylethylated HA revealed that it contained five residues of hydroxyproline and an N-linked type sugar chain.  相似文献   

15.
Nerve growth factor (NGF) was purified from the venom of Vipera russelli russelli by Sephadex G-50 gel filtration, S-Sepharose column chromatography and Blue-Sepharose CL-6B column chromatography. The purified NGF was found to be a glycoprotein, whose apparent molecular mass was estimated to be about 17.5 kDa by SDS-PAGE. The amino-acid sequence was determined by a combination of conventional methods. The V. r. russelli NGF was composed of 117 amino-acid residues with one residue, Asn-21, being N-linked glycosylated and the molecular mass of its protein portion was calculated to be 13,280 Da.  相似文献   

16.
Oxalate oxidase (OxO, EC 1.2.3.4.) was purified to homogeneity from wheat (Triticum aestivum) seedlings by sequential thermal treatment, ultrafiltration, Sephadex G-100 gel filtration and affinity chromatography with concanavalin A. The enzyme was purified 66.11-fold with a recovery of 21.97%. It showed a subunit molecular mass of 32.6 kDa on SDS-PAGE and a native molecular mass of 170 kDa on Sephadex G-150 filtration, suggesting that it is a pentamer. The wheat OxO had a maximum activity at pH 3.5. Its K m for oxalate was 0.21 mM. Chemical modification revealed that cysteine, lysine and carboxylate residues were essential for OxO activity, whereas arginine, serine, threonine and tryptophane residues were not essential.  相似文献   

17.
A novel inhibitor of cysteine proteinases has been isolated from fruit bodies of a mushroom Clitocybe nebularis. The inhibitor was purified to homogeneity by affinity chromatography and gel filtration, followed by reverse-phase high pressure liquid chromatography. The active inhibitor has an apparent molecular mass of about 34 kDa by gel filtration and by SDS-polyacrylamide gel electrophoresis without prior boiling of the sample. Boiling in 2.5% SDS or incubation in 6 m guanidine hydrochloride resulted in a single band of 17 kDa, indicating homodimer composition with no intersubunit disulfide bonds. The inhibitor in nondenaturing buffer is resistant to boiling in water, retaining its activity and dimer composition. The mushroom protein is a tight binding inhibitor of papain (K(i) = 0.59 nm), cathepsin L (K(i) = 0.41 nm), cathepsin B (K(i) = 0.48 micrometer), and bromelain (K(i) = 0.16 micrometer) but is inactive toward cathepsin H, trypsin, and pepsin. Its isoelectric point is 4.4, and sugar analysis indicates the absence of carbohydrate. A single protein sequence of 150 amino acids, containing no cysteine or methionine residues, was obtained by amino acid sequencing. The calculated molecular mass of 16854 Da corresponds well with the value obtained by mass spectrometry. A major part of this sequence was verified by molecular cloning. The monomer sequence is clearly devoid of typical cystatin structure elements and has no similarity to any other known cysteine proteinase inhibitors but bears some similarity to a lectin-like family of proteins from mushrooms. The inhibitor, which is present in at least two other members of the Clitocybe genus, has been named clitocypin (Clitocybe cysteine proteinase inhibitor).  相似文献   

18.
Glutathione reductase (E.C.1.8.1.7; GR) was purified from bovine erythrocytes and some characteristics properties of the enzyme were investigated. The purification procedure was composed of preparation of the hemolysate, ammonium sulfate fractionation, affinity chromatography on 2',5'-ADP Sepharose 4B, and gel filtration chromatography on Sephadex G-200. As a result of four consecutive procedures, the enzyme was purified 31,250-fold with a yield of 11.39%. Specific activity at the final step was 62.5 U (mg proteins)(-1). For the enzyme, optimum pH, optimum temperature, optimum ionic strength, and stable pH were found to be 7.3, 55 degrees C, 435 mM, 7.3, respectively. The molecular weight of the enzyme was found to be 118 kDa by Sephadex G-200 gel filtration chromatography and the subunit molecular weight was found to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). In addition, Km and Vmax values were determined for glutathione disulfide (GSSG) and NADPH. Ki constants and inhibition types were established for glutathione (GSH) and NADP+. Also, effects of NADPH and GSSG were investigated on the enzyme activities.  相似文献   

19.
Collagenase from the internal organs of a mackerel was purified using acetone precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, gel filtration chromatography on a Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel, and gel filtration chromatography on a Sephadex G-75 column. The molecular mass of the purified enzyme was estimated to be 14.8 kDa by gel filtration and SDS-PAGE. The purification and yield were 39.5-fold and 0.1% when compared to those in the starting-crude extract. The optimum pH and temperature for the enzyme activity were around pH 7.5 and 55 degrees, respectively. The K(m) and V(max) of the enzyme for collagen Type I were approximately 1.1mM and 2,343 U, respectively. The purified enzyme was strongly inhibited by Hg2+, Zn2+, PMSF, TLCK, and the soybean-trypsin inhibitor.  相似文献   

20.
The specific inhibitor of calcium-dependent proteases was purified from soluble extracts of bovine heart. The protein had a molecular weight of 125,000 on sodium dodecyl sulfate polyacrylamide gels and migrated on gel filtration chromatography with an apparent molecular weight of 250,000. The inhibitor specifically blocked the action of the two calcium-dependent proteases, CDP-I and CDP-II, but did not influence a variety of other proteases including trypsin, chymotrypsin, or Staphylococcus aureus V8 protease. These latter enzymes extensively degraded the inhibitor to discrete lower molecular weight peptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by gel filtration chromatography. Under the conditions studied, proteolysis of the inhibitor had little or no effect on its inhibitory activity; isolated peptides with molecular weights as low as 17,000 retained inhibitory function. A number of various-sized inhibitor fragments were isolated by gel filtration chromatography and by SDS-PAGE. These fragments were compared with the intact inhibitor for their ability to inhibit CDPs. As suggested previously by us and others, one molecule of intact inhibitor appears to inhibit up to five molecules of calcium-dependent protease. The inhibitor fragments of decreasing size inhibited correspondingly fewer molecules of protease. These results suggest that the inhibitor protein contains multiple functional domains and may explain some of the discrepancies in reported molecular weights for this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号