首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of calcium ions on the reactivation of cytoplasmic actomyosin contraction in cell-free models of endoplasmic drops from Physarum polycephalum after glycerol extraction at low ionic strength depends on the duration of the extraction procedure: Ca++ prevents contraction in 20-h extracted specimens, whereas after several days of extraction this Ca++-sensitivity is lost. These results indicate an inhibitory effect of Ca++ on cytoplasmic actomyosin contraction.  相似文献   

2.
Summary The treatment of isolated protoplasmic strands of Physarum polycephalum with 2.5% ethanol in a physioogical salt solution under isometric conditions induces the formation of a large amount of mostly longitudinally organized actomyosin fibrils in the endoplasmic channel, a region normally free of actomyosin fibrils. The quantity of fibrillogenesis as well as the concomitant force output during the induced contractures are dependent on the Ca+ +- content and the temperature of the test solution. The method was developed to optimize the structure of the plasmodial strands before their subsequent transformation into cell-free models by permeabilization and extraction of the strands.Cryosections of plasmodial strands containing cytoplasmic actomyosin fibrils stained with fluorescently labeled phallotoxins offer a further assay for the study of their contraction physiology under cell-free conditions.  相似文献   

3.
Summary A special cell line derived from a rat mammary adenocarcinoma (RMCD cells) displays a distinct pattern of actomyosin fibrils (AM fibrils) visible with phase contrast, Nomarski interference and polarized light optics. It was shown that the cytoplasmic AM fibrils are arranged as bundles of highly parallel F-actin filaments. The chemical nature of the filaments was identified by incubation with heavy meromyosin from rabbit skeletal muscle.These cytoplasmic actomyosin fibrils actively contract under isotonic conditions. This was shown by contraction experiments under polarized light optics, by cinematographic analysis and by direct proof of the contractility of AM fibrils isolated by laser micro-dissection. Thus, cytoplasmic AM fibrils can be assumed to represent structures essential for motive force generation in contraction processes in non-muscle cells.We thank Dr. W. Meier-Ruge and Mr. W. Bielser (Basic Medical Research Departments, Sandoz AG, Basle, Switzerland) for making the laser equipment available to us and for their kind cooperation during this investigation. Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg.  相似文献   

4.
A combined application of 5 mM KCN and 19 microM Ca++-ionophore A-23187 leads to pronounced contractures of plasmodial strands of Physarum polycephalum. The appearance of the contractures is independent of the amount of Ca++ in the external medium. Tensiometric registrations of longitudinal contraction activity (isometric regime) reveal an average tension increase of 50 mp compared with the preceding tension level before the addition of KCN and ionophore. This high force output during the contracture coincides with a pronounced increase in the number of cytoplasmic actomyosin fibrils. Their ultrastructure is seen as a high lateral density of strictly parallel arranged F-actin filaments; the state of cytoplasmic actomyosin during this isometric contracture corresponds to the ultrastructure of isometrically contracted fibrils during the normal contraction-relaxation cycle of this organism. A simultaneous impediment of respiration and Ca++ homeostasis strongly favours a shift of the actin equilibrium to the high polymeric side in the form of fibrils and may thus be used as a preparatory step improving the specimens in the context of other investigations, e.g., for immunocytochemical investigations or for the preparation of cell-free models to be reactivated after extraction procedures.  相似文献   

5.
The spatial distribution of cytoplasmic actin in endoplasmic drops as well as in plasmodial strands can be demonstrated in cryosections by fluorescently labelled phallotoxins and actin antibodies. Our results on cryosections show an identical fibrillar actin distribution as revealed in semithin sections after conventional fixation and embedding. Thus, it is now possible to apply immunocytochemical analysis to any and all plasmodial stages with or without prior fixation and without using extraction procedures. Consequentially the loss of soluble compounds during processing is avoided. The most protective pretreatment of the living specimens before freezing is a 15 min incubation in 1.5 M sucrose containing 50 mM KCl, 10 mM EGTA and 10 mM PIPES buffer, pH 7.0, at 4 degrees C.  相似文献   

6.
Plasmodial fragments of Physarum polycephalum, excised from anterior regions of a thin-spread plasmodium, contracted-relaxed cyclicly with a period of 3-5 min. The area of the fragments decreased approximately 10% during contraction. In most cases, there was little endoplasmic streaming which indicates that contractions were synchronized throughout the fragment. By both polarized light and fluorescence microscopy, the organization and distribution of the cytoplasmic actomyosin fibrils in the fragments changed in synchrony with the contraction cycle. The fibrils formed during the contraction phase, and finally became a highly organized framework consisting of a three-dimensional network of numerous fibrils with many converging points (the nodes). During relaxation, the fibrils degenerated and disappeared almost completely, though some very weak fibrils remained near the nodes and the periphery. The results obtained by fluorometry of the fragments, stained with rhodamine-phalloidin, suggested that the G-F transformation of actin is not the main underlying process of the fibrillar formation.  相似文献   

7.
Plasmodial veins of Physarum polycephalum were investigated by combining cinematographical and tensiometrical methods. Veins remaining on their original growing substrate show characteristic surface movements resulting from an intrinsic contraction automaticity. Radial and longitudinal components of surface movements were registered simultaneously. Both contraction activities show identical frequencies, in contrast to results derived from experiments with isolated veins. There is only one genuine frequency and therefore one has not necessarily to suppose the existence of a cooperation of two oscillating systems underlying the rhythmic contraction phenomena. The results are discussed in respect to the basis of the contraction phenomena: the cytoplasmic actomyosin fibrils of Physarum and their function in motive force generation for protoplasmic streaming.  相似文献   

8.
We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in constant darkness contracted spontaneously to their light-adapted (LA) positions if the culture medium contained greater than or equal to 10(-3)M Cao++. DA cones retained their long DA positions in a medium containing less than or equal to 10(-6)M Cao++. Low [Ca++]o (10(-5)-10(-7)M) also permitted darkness to induce cone elongation and RPE pigment aggregation. Light produced cone contraction even in the absence of Cao++, but the extent of contraction was reduced if [Ca++]o was less than 10(-3) M. Thus, full contraction appeared to require the presence of external Ca++. High [K+]o (greater than or equal to 27 mM) inhibited both light-induced and light-independent Ca++-induced cone contraction. However, low [Na+]o (3.5 mM) in the presence of less than or equal to 10(-6)M Cao++ did not mimic light onset by inducing cone contraction in the dark. High [K+]o also promoted dark-adaptive cone and RPE movements in LA retinas cultured in the light. All results obtained in high [K+]o were similar to those observed when DA or LA retinas were exposed to treatments that elevate cytoplasmic cyclic 3',5'-adenosine monophosphate (cAMP) content.  相似文献   

9.
Thin-spread glycerol-extracted Physarum plasmodia were treated with N-ethylmaleimide (NEM) to block myosin-ATPase and contractility. After supplementing the models with purified plasmodial myosin, they could be reactivated and contracted upon addition of ATP. Fluorescently labeled actomyosin fibers ruptured during contraction, resulting in beaded or rod-like contraction centers. Glycerol-extracted plasmodia lose their negative Ca++-dependence during extraction. Reconstitution of NEM-treated models with plasmodial myosin partly restored this Ca++-sensitivity. Thus, either myosin or a factor associated with it seems to be involved in the Ca++-dependent regulation of cytoplasmic actomyosin contraction in Physarum. NEM-blocked models reconstituted with skeletal muscle myosin were not reactivated by ATP. The same plasmodia subsequently incubated with plasmodial myosin were able to contract.  相似文献   

10.
Ca2+ "free" actomyosin suspensions as well as actin heavy meromyosin (HMM) solutions in the presence of Ca2+ showed no contractile response (superprecipitation) and had low steady-state Mg2+-ATPase activity. Under the same experimental conditions both the enzymatic activity increased and contractile response was restored if the solubility of the proteins was depressed by the addition of polyethylene glycol 4000 (PEG-4000). The stability of the enzymatically active actomyosin or actin HMM complexes was 10 times lower in cleared solutions than in the insoluble actomyosin or actin HMM suspensions. It was concluded that soluble actomyosin or actin HMM solutions are inadequate test tube models for studying muscular contraction.  相似文献   

11.
In chronic liver injury, hepatic stellate cells (HSCs) have been implicated as regulators of sinusoidal vascular tone. We studied the relative role of Ca(2+)-dependent and Ca(2+)-independent contraction pathways in rat HSCs and correlated these findings to in situ perfused cirrhotic rat livers. Contraction of primary rat HSCs was studied by a stress-relaxed collagen lattice model. Dose-response curves to the Ca(2+) ionophore A-23187 and to the calmodulin/myosin light chain kinase inhibitor W-7 served to study Ca(2+)-dependent pathways. Y-27632, staurosporin, and calyculin (inhibitors of Rho kinase, protein kinase C, and myosin light chain phosphatase, respectively) were used to investigate Ca(2+)-independent pathways. The actomyosin interaction, the common end target, was inhibited by 2,3-butanedione monoxime. Additionally, the effects of W-7, Y-27632, and staurosporin on intrahepatic vascular resistance were evaluated by in situ perfusion of normal and thioacetamide-treated cirrhotic rat livers stimulated with methoxamine (n = 25 each). In vitro, HSC contraction was shown to be actomyosin based with a regulating role for both Ca(2+)-dependent and -independent pathways. Although the former seem important, an important auxiliary role for the latter was illustrated through their involvement in the phenomenon of "Ca(2+) sensitization." In vivo, preincubation of cirrhotic livers with Y-27632 (10(-4) M) and staurosporin (25 nM), more than with W-7 (10(-4) M), significantly reduced the hyperresponsiveness to methoxamine (10(-4) M) by -66.8 +/- 1.3%, -52.4 +/- 2.7%, and -28.7 +/- 2.8%, respectively, whereas in normal livers this was significantly less: -43.1 +/- 4.2%, -40.2 +/- 4.2%, and -3.8 +/- 6.3%, respectively. Taken together, these results suggest that HSC contraction is based on both Ca(2+)-dependent and -independent pathways, which were shown to be upregulated in the perfused cirrhotic liver, with a predominance of Ca(2+)-independent pathways.  相似文献   

12.
The experimental opening and resealing of occluding junctions in monolayers of cultured MDCK cells (epithelioid of renal origin) was explored by measuring changes in the electrical resistance across the monolayer and by freeze-fracture electron microscopy. As in natural epithelia, the function of occluding junctions as permeability barriers specifically depends on extracellular Ca++ concentration and fails if this ion is replaced by Mg++ or Ba++. The removal of Ca++ and the addition of EGTA to the bathing medium opened the junctions and reduced the transepithelial resistance. Resealing was achieved within 10-15 min by restoring Ca++. Quantitative freeze-fracture electron microscopy showed that junctional opening, caused by lack of Ca++, was accompanied by simplification of the pattern of the membrane strands of the occluding junction without disassembly or displacement of the junctional components. Resealing of the cellular contacts involved the gradual return to a normal junctional pattern estimated as the average number of strands constituting the junction. The occluding junctions were also opened by the addition of the ionophore A23187, suggesting that the sealing of the contacts requires high Ca++ on the extracellular side and low Ca++ concentration of the cytoplasmic compartment. The opening process could be blocked by low temperature (7.5 degrees C). Resealing did not depend on serum factors and did not require protein synthesis; therefore, it seems to be caused by reassembly of preexisting membrane junctional components. The restoration of the junctions occurred simultaneously with the establishment of ion-selective channels; the Na+/Cl- and the cation/cation selectivity were recovered with the same time-course as the electrical resistance. The role of the cytoskeleton in the process of junctional reassembly is reported in the companion article.  相似文献   

13.
14.
The plasmalemma of smooth muscle cells is periodically banded. This arrangement ensures efficient transmission of contractile activity, via the firm, actin-anchoring regions, while the more elastic caveolae-containing "hinge" regions facilitate rapid cellular adaptation to changes in cell length. Since cellular mechanics are undoubtedly regulated by components of the membrane and cytoskeleton, we have investigated the potential role played by annexins (a family of phospholipid- and actin-binding, Ca(2+)-regulated proteins) in regulating sarcolemmal organization. Stimulation of smooth muscle cells elicited a relocation of annexin VI from the cytoplasm to the plasmalemma. In smooth, but not in striated muscle extracts, annexins II and VI coprecipitated with actomyosin and the caveolar fraction of the sarcolemma at elevated Ca(2+) concentrations. Recombination of actomyosin, annexins, and caveolar lipids in the presence of Ca(2+) led to formation of a structured precipitate. Participation of all 3 components was required, indicating that a Ca(2+)-dependent, cytoskeleton-membrane complex had been generated. This association, which occurred at physiological Ca(2+) concentrations, corroborates our biochemical fractionation and immunohistochemical findings and suggests that annexins play a role in regulating sarcolemmal organization during smooth muscle contraction.  相似文献   

15.
The present investigation was performed in an attempt to contribute to answering the question whether the plasmalemma of the plasmodial stage of Physarum represents the site of a trigger mechanism for the oscillating contraction activity of cytoplasmic actomyosin. The effects of the following substances on persistence of tensiometrically measured longitudinal and radial activities of Physarum veins and on de novo generation of activities in experimentally generated drops were studied: caffeine, theophylline, acetylcholinium chloride, procaine, physostigminium salicylate, iso-ompa, nifedipin, sodium nitroprusside, potassium thiocyanate, D2O; as well as the effects of ions such as La+++ and high outer concentrations of Na+ and K+. Some of the substances were applied simultaneously for comparison externally (by bathing solutions) and internally (by injection). The experimental data speak against the existence of electrogenic rhythmical Ca++, Na+ or K+ pumps across the plasmalemma which could have a triggering function for the oscillation. The contraction activities of the cytoplasmic actomyosin seem to represent a spontaneous endogeneous oscillation which can be modulated via the plasmalemma during chemotaxis.  相似文献   

16.
A fura-2 microspectrofluorimeter was used to visualize and measure intracellular calcium transients in normal locomoting and experimentally treated Amoeba proteus. The results show that subcellular heterogeneities of cytosolic free calcium, [Ca2+]i, correlate in time and distribution with characteristic patterns of protoplasmic streaming and ameboid movement. In detail, calcium ions have a dual effect by regulating both the contractile activities of the actomyosin cortex and the rheological properties of the cytoplasmic matrix. A high resting [Ca2+]i of 1.5 to 2.0 x 10(-7) M in the uroid region or in retracting pseudopodia is associated with the transformation of rigid ectoplasmic gel into fluid endoplasmic sol, and a low [Ca2+]i of 10(-9) to 10(-8) M in the front region or in extending pseudopodia with the re-transformation of endoplasmic sol into ectoplasmic gel. Locally increased peripheral [Ca2+]i accumulations higher than 10(-7) M are also observed at places where the actomyosin cortex is known to generate motive force by contraction, i.e., in the intermediate region of orthotactic amebas or in large pseudopodia of polytactic cells. External application of 30 mM KCl abolishes the intracellular Ca2+ gradient such that [Ca2+]i attains a uniform distribution and a maximum concentration of 2 x 10(-7) M; as a consequence, cells can show a transient loss of their locomotor activity and polarity by undergoing spherulation and total contraction. On the other hand, high external Ca2+ concentrations in the range of 100 mM stabilize the bipolar cellular organization, enhance the movement velocity and induce the propagation of Ca2+ waves repeatedly running from the uroid to the front region. The significance of external ions for signal transmission and the control of dynamic activities as well as the origin and fate of calcium participating in the observed transients are discussed.  相似文献   

17.
In contracting (superprecipitating) clearing and fully contracted (previously superprecipitated) actomyosin molecules the presteady state phosphate burst was found to be 2 nanomoles inorganic phosphate (Pi) per nanomole myosin. In these muscle models a significant difference in the Mg2+ ATPase activity was found following the initial phosphate burst. Between 120 and 800 milliseconds after the commencement of the reaction the Mg2+ ATPase activity of contracting actomyosin molecules was 5-10 times greater than that of the fully contracted or clearing actomyosin molecules. In the same time interval the rate of turbidity increase of the contracting actomyosin molecules was about 10 fold greater than during the remainder of the time to reach maximal superprecipitation. This high initial ATPase activity found to be present only in the contracting actomyosin molecules and coinciding with the high rate of the velocity of contraction provides sufficient energy for contraction. We propose that this high Mg2+--ATPase activity following the initial burst and included as a part of "conventional" steady state ATPase activity is the source of energy for muscular contraction. Calculation of kinetic and thermodynamic constants indicates that the contracting actomyosin molecule is subjected to a conformational change. As a consequence of contraction the complementarity of the enzyme site to the intermediate complex decreases about 100 fold. Thus the contracted molecules temporarily become relatively refractive to provide energy for the contractile process. In our opinion these findings are important with regard to muscular contraction.  相似文献   

18.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

19.
J. D'Haese  H. Hinssen 《Protoplasma》1978,95(4):273-295
Summary The isolated contractile proteins of the slime mouldPhysarum polycephalum and of rabbit skeletal muscle were investigated by using actomyosin thread models. The actomyosins were compared with respect to contraction behaviour, fine structure, and ATPase activity. Thread models were made of natural and synthetic actomyosins of both systems.The natural actomyosins differ considerably: The actin filament length ofPhysarum actomyosin is only about one fourth, the ATPase activity and actin/myosin ratio are much lower compared to natural muscle actomyosin. The contraction rate of the natural slime mould actomyosin is remarkably slower than that of the natural muscle actomyosin.The synthetic actomyosins were formed from separately isolated actins and myosins with a constant actin/myosin ratio and comparable actin filament lengths. The thread models of either recombined and hybridized actomyosins of both systems contract with nearly identical rates. The comparison of the synthetic actomyosins shows that under comparable conditions a) the actomyosins of both systems perform work with the same efficiency, b) the actin and myosin component is freely exchangeable without any change in the rate of actomyosin contraction. These results indicate that in both skeletal muscle and slime mould the force generation is based on the same mechanism of actin-myosin interaction.

Ein Teil dieser Ergebnisse wurde als Symposiumsvortrag auf dem 9th Meeting of the Federation of the European Biochemical Societies, Budapest vorgetragen.  相似文献   

20.
Electron probe analysis of dry cryosections was used to determine the composition of the cytoplasm and organelles of rabbit portal-anterior mesenteric vein (PAMV) smooth muscle. All analytical values given are in mmol/kg wt +/- SEM. Cytoplasmic concentrations in normal, resting muscles were: K, 611 +/- 1.7; Na, 167 +/- 2.7; Cl, 278 +/- 1.0; Mg, 36 +/- 1.1; Ca, 1.9 +/- 0.5; and P, 247 +/- 1.1. Hence, the sum of intracellular Na + K exceeded cytoplasmic Cl by 500 mmol/kg dry wt, while the calculated total, nondiffusible solute was approximately 50 mmol/kg. Cytoplasmic K and Cl were increased in smooth muscles incubated in solutions containing an excess (80 mM) of KCl. Nuclear and cytoplasmic Na and Ca concentrations were not significantly different. The mitochondrial Ca content in normal fibers was low, 0.8 +/- 0.5, and there was no evidence of mitochondrial Ca sequestration in muscles frozen after a K contracture lasint 30 min. Transmitochondrial gradients of K, Na, and Cl were small (0.9--1.2). In damaged fibers, massive mitochondrial Ca accumulation of up to 2 mol/kg dry wt in granule form and associated with P could be demonstrated. Our findings suggest (a) that the nonDonnan distribution of Cl in smooth muscle is not caused by sequestration in organelles, and that considerations of osmotic equilibrium and electroneutrality suggest the existence of unidentified nondiffusible anions in smooth muscle, (b) that nuclei do not contain concentrations of Na or Ca in excess of cytoplasmic levels, (c) that mitochondria in PAMV smooth muscle do not play a major role in regulating cytoplasmic Ca during physiological levels of contraction but can be massively Ca loaded in damaged cells, and (d) that the in situ transmitochondrial gradients of K, Na, and Cl do not show these ions to be distributed according to a large electromotive Donnan force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号