首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To perform vectorial secretory and transport functions that are critical for the survival of the organism, epithelial cells sort plasma membrane proteins into polarized apical and basolateral domains. Sorting occurs post-synthetically, in the trans Golgi network (TGN) or after internalization from the cell surface in recycling endosomes, and is mediated by apical and basolateral sorting signals embedded in the protein structure. Basolateral sorting signals include tyrosine motifs in the cytoplasmic domain that are structurally similar to signals involved in receptor internalization by clathrin-coated pits. Recently, an epithelial-specific adaptor protein complex, AP1B, was identified. AP-1B recognizes a subset of basolateral tyrosine motifs through its mu 1B subunit. Here, we characterized the post-synthetic and post-endocytic sorting of the fast recycling low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) in LLC-PK1 cells, which lack mu 1B and mis-sort both receptors to the apical surface. Targeting and recycling assays in LLC-PK1 cells, before and after transfection with mu 1B, and in MDCK cells, which express mu 1B constitutively, suggest that AP1B sorts basolateral proteins post-endocytically.  相似文献   

2.
Alzheimer amyloid precursor protein (APP) is the precursor for the Abeta peptide involved in pathogenesis of Alzheimer's disease. The soluble ectodomain fragment of APP (sAPP) functions as a growth factor for epithelial cells, suggesting an important function for APP outside neuronal tissue. Previous studies have shown that in polarized epithelial cells, APP is targeted to the basolateral domain. Tyr653 within the cytoplasmic tail of APP mediates the basolateral targeting of APP, but the sorting machinery that binds to this residue has largely remained unknown. In this study, we analyzed the role of adaptor complexes in the polarized sorting of APP. We show that the medium subunit mu1B of the epithelia-specific adaptor protein (AP)-1B binds onto the cytoplasmic tail of APP in a Tyr653-dependent way. Moreover, ectopic expression of mu1B in cells lacking AP-1B resulted in correction of apical missorting of wild-type but not Tyr653Ala APP. Basolateral secretion of sAPP was found to be independent of Tyr653. We propose a model for polarized targeting of APP according to which sorting of APP to basolateral domain is dependent on binding of AP-1B on Tyr653 in basolateral endosomes. This model is in accordance with the current understanding of sorting mechanisms mediating polarized targeting of membrane proteins.  相似文献   

3.
Most epithelial cells contain two AP-1 clathrin adaptor complexes. AP-1A is ubiquitously expressed and involved in transport between the TGN and endosomes. AP-1B is expressed only in epithelia and mediates the polarized targeting of membrane proteins to the basolateral surface. Both AP-1 complexes are heterotetramers and differ only in their 50-kD mu1A or mu1B subunits. Here, we show that AP-1A and AP-1B, together with their respective cargoes, define physically and functionally distinct membrane domains in the perinuclear region. Expression of AP-1B (but not AP-1A) enhanced the recruitment of at least two subunits of the exocyst complex (Sec8 and Exo70) required for basolateral transport. By immunofluorescence and cell fractionation, the exocyst subunits were found to selectively associate with AP-1B-containing membranes that were both distinct from AP-1A-positive TGN elements and more closely apposed to transferrin receptor-positive recycling endosomes. Thus, despite the similarity of the two AP-1 complexes, AP-1A and AP-1B exhibit great specificity for endosomal transport versus cell polarity.  相似文献   

4.
The cytoplasmic tail of the H,K-ATPase beta-subunit contains a putative tyrosine-based motif that directs the beta-subunit's basolateral sorting when it is expressed in Madin-Darby Canine Kidney (MDCK) cells. When expressed in LLC-PK(1) cells, however, the beta-subunit is localized to the apical membrane. Several proteins that contain tyrosine-based motifs, including the low-density lipoprotein and transferrin receptors, show a similar sorting 'defect' when expressed in LLC-PK(1) cells. For low-density lipoprotein and transferrin receptors, this behavior is due to the differential expression of the mu 1B subunit of the AP-1B clathrin adaptor complex. mu 1B is expressed by MDCK cells, but not LLC-PK(1) cells, and transfection of mu 1B into LLC-PK(1) cells restores basolateral localization of low-density lipoprotein and transferrin receptors. For the beta-subunit, however, mu B expression in LLC-PK(1) cells does not induce its basolateral expression. We found that the beta-subunit interacts with both mu 1B and mu 1A in vitro and in vivo. The capacity to participate in a mu 1B interaction therefore is not sufficient to program the beta-subunit's basolateral localization in MDCK cells. Our data suggest that the H,K-ATPase beta-subunit's basolateral sorting signal is either masked in certain epithelial cells, or requires an interaction with sorting machinery other than AP-1B for delivery to the basolateral plasma membrane.  相似文献   

5.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

6.
Mutations in the gene encoding the kidney anion exchanger 1 (kAE1) can lead to distal renal tubular acidosis (dRTA). dRTA mutations reported within the carboxyl (C)-terminal tail of kAE1 result in apical mis-targeting of the exchanger in polarized renal epithelial cells. As kAE1 physically interacts with the μ subunit of epithelial adaptor protein 1 B (AP-1B), we investigated the role of heterologously expressed μ1B subunit of the AP-1B complex for kAE1 retention to the basolateral membrane in polarized porcine LLC-PK1 renal epithelial cells that are devoid of endogenous AP-1B. We confirmed the interaction and close proximity between kAE1 and μ1B using immunoprecipitation and proximity ligation assay, respectively. Expressing the human μ1B subunit in these cells decreased significantly the amount of cell surface kAE1 at the steady state, but had no significant effect on kAE1 recycling and endocytosis. We show that (i) heterologous expression of μ1B displaces the physical interaction of endogenous GAPDH with kAE1?WT supporting that both AP-1B and GAPDH proteins bind to an overlapping site on kAE1 and (ii) phosphorylation of tyrosine 904 within the potential YDEV interaction motif does not alter the kAE1/AP-1B interaction. We conclude that μ1B subunit is not involved in recycling of kAE1.  相似文献   

7.
The AP-1B clathrin adaptor complex plays a key role in the recognition and intracellular transport of many membrane proteins destined for the basolateral surface of epithelial cells. However, little is known about other components that act in conjunction with AP-1B. We found that the Rab8 GTPase is one such component. Expression of a constitutively activated GTP hydrolysis mutant selectively inhibited basolateral (but not apical) transport of newly synthesized membrane proteins. Moreover, the effects were limited to AP-1B-dependent basolateral cargo; basolateral transport of proteins containing dileucine targeting motifs that do not interact with AP-1B were targeted normally despite overexpression of mutant Rab8. Similar results were obtained for a dominant-negative allele of the Rho GTPase Cdc42, previously implicated in basolateral transport but now shown to be selective for the AP-1B pathway. Rab8-GFP was localized to membranes in the TGN-recycling endosome, together with AP-1B complexes and the closely related but ubiquitously expressed AP-1A complex. However, expression of active Rab8 caused a selective dissociation of AP-1B complexes, reflecting the specificity of Rab8 for AP-1B-dependent transport.  相似文献   

8.
Endocytosis of membrane proteins is typically mediated by signals present in their cytoplasmic domains. These signals usually contain an essential tyrosine or pair of leucine residues. Both tyrosine- and dileucine-based endocytosis signals are recognized by the adaptor complex AP-2. The best understood of these interactions occurs between the tyrosine-based motif, YXXPhi, and the mu2 subunit of AP-2. We recently reported a tryptophan-based endocytosis signal, WLSL, contained within the cytoplasmic domain of the neonatal Fc receptor. This signal resembles YXXPhi. We have investigated the mechanism by which the tryptophan-based signal is recognized. Both interaction assays in vitro and endocytosis assays in vivo show that mu2 binds the tryptophan-based signal. Furthermore, the WLSL sequence binds the same site as YXXPhi. Unlike the WXXF motif, contained in stonin 2 and other endocytic proteins, WLSL does not bind the alpha subunit of AP-2. These observations reveal a functional similarity between the tryptophan-based endocytosis signal and the YXXPhi motif, and an unexpected versatility of mu2 function.  相似文献   

9.
We recently identified transmembrane protein shrew-1 and showed that it is able to target to adherens junctions in polarized epithelial cells. This suggested shrew-1 possesses specific basolateral sorting motifs, which we analyzed by mutational analysis. Systematic mutation of amino acids in putative sorting signals in the cytoplasmic domain of shrew-1 revealed three tyrosines and a dileucine motif necessary for basolateral sorting. Substitution of these amino acids leads to apical localization of shrew-1. By applying tannic acid to either the apical or basolateral part of polarized epithelial cells, thereby blocking vesicle fusion with the plasma membrane, we obtained evidence that the apically localized mutants were primarily targeted to the basolateral membrane and were then redistributed to the apical domain. Further support for a postendocytic sorting mechanism of shrew-1 was obtained by demonstrating that mu1B, a subunit of the epithelial cell-specific adaptor complex AP-1B, interacts with shrew-1. In conclusion, our data provide evidence for a scenario where shrew-1 is primarily delivered to the basolateral membrane by a so far unknown mechanism. Once there, adaptor protein complex AP-1B is involved in retaining shrew-1 at the basolateral membrane by postendocytic sorting mechanisms.  相似文献   

10.
Aquaporin 4 (AQP4) is the predominant water channel in the brain. It is targeted to specific membrane domains of astrocytes and plays a crucial role in cerebral water balance in response to brain edema formation. AQP4 is also specifically expressed in the basolateral membranes of epithelial cells. However, the molecular mechanisms involved in its polarized targeting and membrane trafficking remain largely unknown. Here, we show that two independent C-terminal signals determine AQP4 basolateral membrane targeting in epithelial MDCK cells. One signal involves a tyrosine-based motif; the other is encoded by a di-leucine-like motif. We found that the tyrosine-based basolateral sorting signal also determines AQP4 clathrin-dependent endocytosis through direct interaction with the mu subunit of AP2 adaptor complex. Once endocytosed, a regulated switch in mu subunit interaction changes AP2 adaptor association to AP3. We found that the stress-induced kinase casein kinase (CK)II phosphorylates the Ser276 immediately preceding the tyrosine motif, increasing AQP4-mu 3A interaction and enhancing AQP4-lysosomal targeting and degradation. AQP4 phosphorylation by CKII may thus provide a mechanism that regulates AQP4 cell surface expression.  相似文献   

11.
S Hning  J Griffith  H J Geuze    W Hunziker 《The EMBO journal》1996,15(19):5230-5239
Diversion of membrane proteins from the trans-Golgi network (TGN) or the plasma membrane into the endosomal system occurs via clathrin-coated vesicles (CCVs). These sorting events may require the interaction of cytosolic domain signals with clathrin adaptor proteins (APs) at the TGN (AP-1) or the plasma membrane (AP-2). While tyrosine- and di-leucine-based signals in several proteins mediate endocytosis via cell surface CCVs, segregation into Golgi-derived CCVs has so far only been documented for the mannose 6-phosphate receptors, where it is thought to require a casein kinase II phosphorylation site adjacent to a di-leucine motif. Although recently tyrosine-based signals have also been shown to interact with the mu chain of AP-1 in vitro, it is not clear if these signals also bind intact AP-1 adaptors, nor if they can mediate sorting of proteins into AP-1 CCVs. Here we show that the cytosolic domain of the lysosomal membrane glycoprotein lamp-1 binds AP-1 and AP-2. Furthermore, lamp-1 is present in AP-1-positive vesicles and tubules in the trans-region on the Golgi complex. AP-1 binding as well as localization to AP-1 CCVs require the presence of the functional tyrosine-based lysosomal targeting signal of lamp-1. These results indicate that lamp-1 can exit the TGN in CCVs and that tyrosine signals can mediate these sorting events.  相似文献   

12.
NgCAM is a cell adhesion molecule that is largely axonal in neurons and apical in epithelia. In Madin-Darby canine kidney cells, NgCAM is targeted to the apical surface by transcytosis, being first inserted into the basolateral domain from which it is internalized and transported to the apical domain. Initial basolateral transport is mediated by a sequence motif (Y(33)RSL) decoded by the AP-1B clathrin adaptor complex. This motif is a substrate in vitro for tyrosine phosphorylation by p60src, a modification that disrupts NgCAM's ability to interact with clathrin adaptors. Based on the behavior of various NgCAM mutants, it appears that after arrival at the basolateral surface, the AP-1B interaction site is silenced by phosphorylation of Tyr(33). This slows endocytosis and inhibits basolateral recycling from endosomes, resulting in NgCAM transcytosis due to a cryptic apical targeting signal in its extracellular domain. Thus, transcytosis of NgCAM and perhaps other membrane proteins may reflect the spatial regulation of recognition by adaptors such as AP-1B.  相似文献   

13.
To analyze the interaction of sorting signals with clathrin-associated adaptor complexes, we developed an in vitro assay based on surface plasmon resonance analysis. This method monitors the binding of purified adaptors to immobilized oligopeptides in real time and determines binding kinetics and affinities. A peptide corresponding to the cytoplasmic domain of wild-type influenza hemagglutinin, an apical membrane protein that is not endocytosed, did not significantly bind adaptor complexes. However, peptide sequences containing a tyrosine residue that has previously been shown to induce endocytosis and basolateral sorting were specifically recognized by adaptor complexes. The in vitro rates of adaptor association with these peptides correlated with the internalization rates of the corresponding hemagglutinin variants in vivo. Binding was observed both for purified AP-2 adaptors of the plasma membrane and for AP-1 adaptors of the Golgi, with similar apparent equilibrium dissociation constants in the range 10(-7)-10(-6) M. Adaptor binding was also demonstrated for a sequence containing a C-terminal di-leucine sequence, the second major motif of endocytosis/basolateral sorting signals. These results confirm the concept that interaction of cytoplasmic signals with plasma membrane adaptors determines the endocytosis rate of membrane proteins, and suggest the model that clathrin-coated vesicles of the trans-Golgi network are involved in basolateral sorting.  相似文献   

14.
K Matter  W Hunziker  I Mellman 《Cell》1992,71(5):741-753
In MDCK cells, transport of membrane proteins to the basolateral plasma membrane has been shown to require a distinct cytoplasmic domain determinant. Although the determinant is often related to signals used for localization in clathrin-coated pits, inactivation of the coated pit domain in the human LDL receptor did not affect basolateral targeting. By expressing mutant and chimeric LDL receptors, we have now identified two independently acting signals that are individually sufficient for basolateral targeting. The two determinants mediate basolateral sorting with different efficiencies, but both contain tyrosine residues critical for activity. The first determinant was colinear with, but distinct from, the coated pit domain of the receptor. The second was found in the C-terminal region of the cytoplasmic domain of the receptor and, although tyrosine-dependent, did not mediate endocytosis. The results suggest that membrane proteins can have functionally redundant signals for basolateral transport and that a tyrosine-containing motif may be a common feature of multiple intracellular sorting events.  相似文献   

15.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

16.
《The Journal of cell biology》1994,126(4):991-1004
In MDCK cells, basolateral sorting of most membrane proteins has been shown to depend on distinct cytoplasmic domain determinants. These signals can be divided into those which are related to signals for localization at clathrin-coated pits and those which are unrelated. The LDL receptor bears two tyrosine-containing signals, one of each class, that can independently target receptors from the Golgi complex and from endosomes to the basolateral plasma membrane. We have now investigated the other structural features required for the activity of both determinants. We find that both depend, at least in part, on clusters of 1-3 acidic amino acids located on the COOH-terminal side of each tyrosine. While single residues adjacent to each tyrosine were also found to be critical, the two signals differed in that only the coated pit-unrelated signal could tolerate a phenylalanine in place of its tyrosine residue. We also found that the structural requirements for basolateral targeting of the "coated pit-related" signal were distinct from those required for rapid endocytosis. Apart from sharing a common tyrosine residue, no feature of the NPXY motif for coated pit localization was required for basolateral targeting. We also investigated basolateral targeting of the mouse macrophage Fc receptor (FcRII-B2) which contains a tyrosine-independent coated pit localization signal. Basolateral transport and endocytosis were found to depend on a common dileucine-type motif. Thus, basolateral targeting determinants, like coated pit domains, can contain either tyrosine- or di-leucine-containing signals. The amino acids in the vicinity of these motifs determine whether they function as determinants for endocytosis, basolateral targeting, or both.  相似文献   

17.
Membrane traffic in polarized epithelial cells   总被引:24,自引:0,他引:24  
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.  相似文献   

18.
The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1) gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na+/K+-ATPase pump (NKA) was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.  相似文献   

19.
Clathrin and the epithelial-specific clathrin adaptor AP-1B mediate basolateral trafficking in epithelia. However, several epithelia lack AP-1B, and mice knocked out for AP-1B are viable, suggesting the existence of additional mechanisms that control basolateral polarity. Here, we demonstrate a distinct role of the ubiquitous clathrin adaptor AP-1A in basolateral protein sorting. Knockdown of AP-1A causes missorting of basolateral proteins in MDCK cells, but only after knockdown of AP-1B, suggesting that AP-1B can compensate for lack of AP-1A. AP-1A localizes predominantly to the TGN, and its knockdown promotes spillover of basolateral proteins into common recycling endosomes, the site of function of AP-1B, suggesting complementary roles of both adaptors in basolateral sorting. Yeast two-hybrid assays detect interactions between the basolateral signal of transferrin receptor and the medium subunits of both AP-1A and AP-1B. The basolateral sorting function of AP-1A reported here establishes AP-1 as a major regulator of epithelial polarity.  相似文献   

20.
The medium (mu) chains of the adaptor protein (AP) complexes AP-1, AP-2, and AP-3 recognize distinct subsets of tyrosine-based (YXXphi) sorting signals found within the cytoplasmic domains of integral membrane proteins. Here, we describe the signal-binding specificity and affinity of the medium subunit mu4 of the recently described adaptor protein complex AP-4. To elucidate the determinants of specificity, we screened a two-hybrid combinatorial peptide library using mu4 as a selector protein. Statistical analyses of the results revealed that mu4 prefers aspartic acid at position Y+1, proline or arginine at Y+2, and phenylalanine at Y-1 and Y+3 (phi). In addition, we examined the interaction of mu4 with naturally occurring YXXphi signals by both two-hybrid and in vitro binding analyses. These experiments showed that mu4 recognized the tyrosine signal from the human lysosomal protein LAMP-2, HTGYEQF. Using surface plasmon resonance measurements, we determined the apparent dissociation constant for the mu4-YXXphi interaction to be in the micromolar range. To gain insight into a possible role of AP-4 in intracellular trafficking, we constructed a Tac chimera bearing a mu4-specific YXXphi signal. This chimera was targeted to the endosomal-lysosomal system without being internalized from the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号