首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
The organizing centers for Drosophila imaginal disc development are created at straight boundaries between compartments; these are maintained by differences in cell affinity controlled by selector genes and intercellular signals. skuld and kohtalo encode homologs of TRAP240 and TRAP230, the two largest subunits of the Drosophila mediator complex; mutations in either gene cause identical phenotypes. We show here that both genes are required to establish normal cell affinity differences at the anterior-posterior and dorsal-ventral compartment boundaries of the wing disc. Mutant cells cross from the anterior to the posterior compartment, and can distort the dorsal-ventral boundary in either the dorsal or ventral direction. The Skuld and Kohtalo proteins physically interact in vivo and have synergistic effects when overexpressed, consistent with a skuld kohtalo double-mutant phenotype that is indistinguishable from either single mutant. We suggest that these two subunits do not participate in all of the activities of the mediator complex, but form a submodule that is required to regulate specific target genes, including those that control cell affinity.  相似文献   

13.
14.
15.
16.
17.
The global regulators AbrB, Abh, and SpoVT are paralogous proteins showing their most extensive sequence homologies in the DNA-binding amino-terminal regions (about 50 residues). The carboxyl-terminal portion of AbrB has been hypothesized to be a multimerization domain with little if any role in DNA-binding recognition or specificity. To investigate the multimerization potentials of the carboxyl-terminal portions of AbrB, Abh, and SpoVT we utilized an in vivo multimerization assay system based upon fusion of the domains to the DNA binding domain of the lambda cI repressor protein. The results indicate that the N and C domains of all three paralogues are independent dimerization modules and that the intact Abh and SpoVT proteins are most probably tetramers. Chimeric proteins consisting of the AbrB N-terminal DNA-binding domain fused to the C domain of either Abh or SpoVT are indistinguishable from wild-type AbrB in their ability to regulate an AbrB target promoter in vivo.  相似文献   

18.
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号