首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exogenous cyclic AMP has been thought to be a chemical without marked pharmacological effect until now, as it is not capable of penetrating the cell membrane in most eucaryotic cells. The present study obtained results consistent with those of most previous studies, showing that exogenous cyclic AMP itself did not interfere with the cell cycle even at the high dose of 100 microM. However, it was found that K252a, a potent inhibitor of protein kinases including protein kinase C, induced DNA re-replication, i.e. DNA synthesis at a elevated DNA ploidy in cells that had not undergone cytokinesis (leading to polyploidization), and that exogenous cyclic AMP markedly potentiated the K252a-induced polyploidization at a very low dose similar to the effective dose of membrane-permeable cyclic AMP analogue dibutyryl cyclic AMP. These findings suggested that the cell membrane changed during the formation of polyploid cells. This supposition was confirmed by scanning electron microscopy to observe structural changes and by determination of cellular attachment to investigate functional changes.  相似文献   

2.
Tritrichomonas foetus and Trichomonas vaginalis are protists that undergo closed mitosis: the nuclear envelope remains intact and the spindle remains extranuclear. Here we show, in disagreement with previous studies, that the axostyle does not disappear during mitosis but rather actively participates in it. We document the main structural modifications of the cell during its cell cycle using video enhanced microscopy and computer animation, bright field light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopy. We propose six phases in the trichomonad's cell cycle: an orthodox interphase, a pre-mitotic phase, and four stages during the cell division process. We report that in T. foetus and T. vaginalis: a) all skeletal structures such as the costa, pelta-axostyle system, basal bodies, flagella, and associated filaments of the mastigont system are duplicated in a pre-mitotic phase; b) the axostyle does not disappear during mitosis, otherwise playing a fundamental role in this process; c) axostyles participate in the changes in the cell shape, contortion of the anterior region of the cell, and karyokinesis; d) flagella are not under assembly during mitosis, as previously stated by others, but completely formed before it; and e) cytokinesis is powered in part by cell locomotion.  相似文献   

3.
Nucleosomes are the fundamental packing units of the eukaryotic genome. A nucleosome core particle comprises an octameric histone core wrapped around by ~147bp DNA. Histones and DNA are targets for covalent modifications mediated by various chromatin modification enzymes. These modifications play crucial roles in various gene regulation activities. A group of common hypotheses for the mechanisms of gene regulation involves changes in the structure and structural dynamics of chromatin induced by chromatin modifications. We employed single molecule fluorescence methods to test these hypotheses by monitoring the structure and structural dynamics of nucleosomes before and after histone acetylation and DNA methylation, two of the best-conserved chromatin modifications throughout eukaryotes. Our studies revealed that these modifications induce changes in the structure and structural dynamics of nucleosomes that may contribute directly to the formation of open or repressive chromatin conformation.  相似文献   

4.
Chromatin structure organization is crucial for regulating many fundamental cellular processes. However, the molecular mechanism that regulates the assembly of higher-order chromatin structure remains poorly understood. In this study, we demonstrate that Brd4 (bromodomain-containing protein 4) protein participates in the maintenance of the higher-order chromatin structure. Brd4, a member of the BET family of proteins, has been shown to play important roles in cellular growth control, cell cycle progression, and cancer development. We apply in situ single cell chromatin imaging and micrococcal nuclease (MNase) assay to show that Brd4 depletion leads to a large scale chromatin unfolding. A dominant-negative inhibitor encoding the double bromodomains (BDI/II) of Brd4 can competitively dissociate endogenous Brd4 from chromatin to trigger severely fragmented chromatin morphology. Mechanistic studies using Brd4 truncation mutants reveal that the Brd4 C-terminal domain is crucial for maintaining normal chromatin structure. Using bimolecular fluorescence complementation technology, we demonstrate that Brd4 molecules interact intermolecularly on chromatin and that replacing Brd4 molecules by BDI/II causes abnormal nucleosome aggregation and chromatin fragmentation. These studies establish a novel structural role of Brd4 in supporting the higher chromatin architecture.  相似文献   

5.
One antioestrogenic compound as well as some antifertility drugs have been administered to female albino rats over a period of six months to study their long term effects on fine structures in PRL cell. Almost in all the cases, the dynamics of hormone synthesis and secretion have been affected. Fine structure is suggestive of activation of synthetic machinery of the cell. The cell picture under the estradiol valerate regimen presents a transitional stage progressing towards involution due to accelerated cell cycle. Sparse granulation, frequent granule extrusion and misplaced exocytosis under the influence of tamoxifen citrate or levonorgestrel + ethinyloestradiol are similar to those observed in adenomatous PRL cell. Fine structural correlates of stepped up synthesis are also observed following chronic progesterogenic influences of progesterone and norethisterone heptanoate, but the magnitude of the change is on a lower scale. All the fine structural changes have been discussed in the context of ultrastructural pathology.  相似文献   

6.
7.
8.
The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories (CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically remodel genome organization might alter during cell differentiation.  相似文献   

9.
pRb and the cdks in apoptosis and the cell cycle   总被引:3,自引:0,他引:3  
Apoptosis is a fundamental biological process present in metazoan cells. Linking apoptosis to the cell cycle machinery provides a mechanism to maintain proper control of cell proliferation in a multicellular organism. pRb and the cyclin-dependent kinases may have dual roles as integral components of the cell cycle and regulators of apoptosis. In many instances manipulation of the cell cycle through these molecules can induce or inhibit apoptosis. Recent studies also identify pRb as a substrate for an apoptotic protease; however, other cell cycle components are not known substrates. While it is clear that many common molecules can affect cell proliferation and cell death, the universality of any one cell cycle molecule in apoptosis has yet to be determined.  相似文献   

10.
The fluorescent ubiquitination-based cell cycle indicator, also known as FUCCI, allows the visualization of the G1 and S/G2/M cell cycle phases of individual cells. FUCCI consists of two fluorescent probes, so that cells in the G1 phase fluoresce red and cells in the S/G2/M phase fluoresce green. FUCCI reveals real-time information about cell cycle dynamics of individual cells, and can be used to explore how the cell cycle relates to the location of individual cells, local cell density, and different cellular microenvironments. In particular, FUCCI is used in experimental studies examining cell migration, such as malignant invasion and wound healing. Here we present, to our knowledge, new mathematical models that can describe cell migration and cell cycle dynamics as indicated by FUCCI. The fundamental model describes the two cell cycle phases, G1 and S/G2/M, which FUCCI directly labels. The extended model includes a third phase, early S, which FUCCI indirectly labels. We present experimental data from scratch assays using FUCCI-transduced melanoma cells, and show that the predictions of spatial and temporal patterns of cell density in the experiments can be described by the fundamental model. We obtain numerical solutions of both the fundamental and extended models, which can take the form of traveling waves. These solutions are mathematically interesting because they are a combination of moving wavefronts and moving pulses. We derive and confirm a simple analytical expression for the minimum wave speed, as well as exploring how the wave speed depends on the spatial decay rate of the initial condition.  相似文献   

11.
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised.  相似文献   

12.
The regulatory proteins of polyomaviruses, including small and large T antigens, play important roles, not only in the viral life cycle but also in virus-induced cell transformation. Unlike many other tumor viruses, the transforming proteins of polyomaviruses have no cellular homologs but rather exert their effects mostly by interacting with cellular proteins that control fundamental processes in the regulation of cell proliferation and the cell cycle. Thus, they have proven to be valuable tools to identify specific signaling pathways involved in tumor progression. Elucidation of these pathways using polyomavirus transforming proteins as tools is critically important in understanding fundamental regulatory mechanisms and hence to develop effective therapeutic strategies against cancer. In this short review, we will focus on the structural and functional features of one polyomavirus transforming protein, that is, the small t-antigen of the human neurotropic JC virus (JCV) and the simian virus, SV40.  相似文献   

13.
The replication of DNA is a fundamental step in the cell cycle, which must be coordinated with cell division to ensure that the daughter cells inherit the same genomic material as the parental cell. The recently published complete genome sequences of some archaeal species together with preliminary biochemical studies suggest that the Archaea quite likely duplicate their chromosome by using replication machinery that seems to be a simplified version of the eukaryotic machinery, although their metabolic facets and their cellular morphology are prokaryotic-like. This review is focused on recent progress on the structural and functional analysis of proteins and enzymes involved in the initiation and elongation steps of DNA replication in Archaea. Differences between the genome replication apparatus of the Euryarchaea and the Crenarchaea (the two main phylogenetic divisions of the Archaea domain) are highlighted.  相似文献   

14.
The Schaechter–Maaløe–Kjeldgaard papers, which have their 50th anniversary this year, have major implications for understanding the cell cycle, control of cell growth, control of cell size, metabolic control, the basic bacterial growth curve, and myriad other bacterial and eukaryotic growth phenomena. These ideas have broad applications that should be considered in current studies of the cell cycle. In particular, the emphasis on steady‐state growth conditions, and clear and sharp changes in growth conditions were fundamental to their experiments and have been codified in the principles of the Copenhagen School of Microbiology. BioEssays 30:1019–1024, 2008. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
In 1900, Adami speculated that a sequence of context‐independent energetic and structural changes governed the reversion of differentiated cells to a proliferative, regenerative state. Accordingly, we show here that differentiated cells in diverse organs become proliferative via a shared program. Metaplasia‐inducing injury caused both gastric chief and pancreatic acinar cells to decrease mTORC1 activity and massively upregulate lysosomes/autophagosomes; then increase damage associated metaplastic genes such as Sox9; and finally reactivate mTORC1 and re‐enter the cell cycle. Blocking mTORC1 permitted autophagy and metaplastic gene induction but blocked cell cycle re‐entry at S‐phase. In kidney and liver regeneration and in human gastric metaplasia, mTORC1 also correlated with proliferation. In lysosome‐defective Gnptab?/? mice, both metaplasia‐associated gene expression changes and mTORC1‐mediated proliferation were deficient in pancreas and stomach. Our findings indicate differentiated cells become proliferative using a sequential program with intervening checkpoints: (i) differentiated cell structure degradation; (ii) metaplasia‐ or progenitor‐associated gene induction; (iii) cell cycle re‐entry. We propose this program, which we term “paligenosis”, is a fundamental process, like apoptosis, available to differentiated cells to fuel regeneration following injury.  相似文献   

16.
The inner membrane complex (IMC) is a unifying morphological feature of all alveolate organisms. It consists of flattened vesicles underlying the plasma membrane and is interconnected with the cytoskeleton. Depending on the ecological niche of the organisms, the function of the IMC ranges from a fundamental role as reinforcement system to more specialized roles in motility and cytokinesis. In this article, we present a comprehensive evolutionary analysis of IMC components, which exemplifies the adaptive nature of the IMCs' protein composition. Focusing on eight structurally distinct proteins in the most prominent "genus" of the Alveolata-the malaria parasite Plasmodium-we demonstrate that the level of conservation is reflected in phenotypic characteristics, accentuated in differential spatial-temporal patterns of these proteins in the motile stages of the parasite's life cycle. Colocalization studies with the centromere and the spindle apparatus reveal their discriminative biogenesis. We also reveal that the IMC is an essential structural compartment for the development of the sexual stages of Plasmodium, as it seems to drive the morphological changes of the parasite during the long and multistaged process of sexual differentiation. We further found a Plasmodium-specific IMC membrane matrix protein that highlights transversal structures in gametocytes, which could represent a genus-specific structural innovation required by Plasmodium. We conclude that the IMC has an additional role during sexual development supporting morphogenesis of the cell, which in addition to its functions in the asexual stages highlights the multifunctional nature of the IMC in the Plasmodium life cycle.  相似文献   

17.
The mammalian Golgi apparatus is organized in the form of a ribbon‐like structure positioned near the centrosome. Despite its multimodular organization, the Golgi complex is characterized by a prominent structural plasticity, which is crucial during essential physiological processes, such as the G2 phase of the cell cycle, during which the Golgi ribbon must be “unlinked” into isolated stacks to allow progression into mitosis. Here we show that the Golgi‐associated protein GRASP65, which is well known for its role in Golgi stacking and ribbon formation, is also required for the organization of the microtubule cytoskeleton. GRASP65 is not involved in microtubule nucleation or anchoring. Instead, it is required for the stabilization of newly nucleated microtubules, leading to their acetylation and clustering of Golgi stacks. Ribbon formation and microtubule stabilization are both regulated by JNK/ERK‐mediated phosphorylation of S274 of GRASP65, suggesting that this protein can coordinate the Golgi structure with microtubule organization. In agreement with an important role, tubulin acetylation is strongly reduced during the G2 phase of the cell cycle, allowing the separation of the Golgi stacks. Thus, our data reveal a fundamental role of GRASP65 in the integration of different stimuli to modulate Golgi structure and microtubule organization during cell division.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号