首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurodegenerative diseases are incurable and debilitating conditions characterized by the deterioration of brain function. Most brain disease models rely on human post‐mortem brain tissue, non‐human primate tissue, or in vitro two‐dimensional (2D) experiments. Resource limitations and the complexity of the human brain are some of the reasons that make suitable human neurodegenerative disease models inaccessible. However, recently developed three‐dimensional (3D) brain organoids derived from pluripotent stem cells (PSCs), including embryonic stem cells and induced PSCs, may provide suitable models for the study of the pathological features of neurodegenerative diseases. In this review, we provide an overview of existing 3D brain organoid models and discuss recent advances in organoid technology that have increased our understanding of brain development. Moreover, we explain how 3D organoid models recapitulate aspects of specific neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, and explore the utility of these models, for therapeutic applications.  相似文献   

2.
The human adult liver has a multi‐cellular structure consisting of large lobes subdivided into lobules containing portal triads and hepatic cords lined by specialized blood vessels. Vital hepatic functions include filtering blood, metabolizing drugs, and production of bile and blood plasma proteins like albumin, among many other functions, which are generally dependent on the location or zone in which the hepatocyte resides in the liver. Due to the liver's intricate structure, there are many challenges to design differentiation protocols to generate more mature functional hepatocytes from human stem cells and maintain the long‐term viability and functionality of primary hepatocytes. To this end, recent advancements in three‐dimensional (3D) stem cell culture have accelerated the generation of a human miniature liver system, also known as liver organoids, with polarized epithelial cells, supportive cell types and extra‐cellular matrix deposition by translating knowledge gained in studies of animal organogenesis and regeneration. To facilitate the efforts to study human development and disease using in vitro hepatic models, a thorough understanding of state‐of‐art protocols and underlying rationales is essential. Here, we review rapidly evolving 3D liver models, mainly focusing on organoid models differentiated from human cells.  相似文献   

3.
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.  相似文献   

4.
Tissues are composed of multiple cell types in a well‐organized three‐dimensional (3D) microenvironment. To faithfully mimic the tissue in vivo, tissue‐engineered constructs should have well‐defined 3D chemical and spatial control over cell behavior to recapitulate developmental processes in tissue‐ and organ‐specific differentiation and morphogenesis. It is a challenge to build a 3D complex from two‐dimensional (2D) patterned structures with the presence of cells. In this study, embryonic stem (ES) cells grown on polymeric scaffolds with well‐defined microstructure were constructed into a multilayer cell‐scaffold complex using low pressure carbon dioxide (CO2) and nitrogen (N2). The mouse ES cells in the assembled constructs were viable, retained the ES cell‐specific gene expression of Oct‐4, and maintained the formation of embryoid bodies (EBs). In particular, cell viability was increased from 80% to 90% when CO2 was replaced with N2. The compressed gas‐assisted bioassembly of stem cell‐polymer constructs opens up a new avenue for tissue engineering and cell therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5‐GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi‐colored reporter demonstrated that Notch‐activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD‐induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper‐proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.  相似文献   

6.
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.  相似文献   

7.
目前,肺体外培养模型有肺类器官和肺芯片两种主要手段。肺类器官是离体的肺上皮干细胞在体外特定的三维培养环境中生长,自发形成具有自我更新能力的干细胞簇并成功分化出功能细胞。肺芯片是利用人工活性膜为细胞提供组织分层结构,模拟微环境和机械力的仿生微流体芯片。由于原有二维培养模式缺乏精确的微结构和功能,组织体外培养模型作为模拟肺部发育、稳态、损伤和再生机制的研究工具,为肺部纤维化、癌症等疾病的探索提供了新的手段和可能。本文就肺成体干细胞两种体外培养模型的分类、研发历史、建立方法、实际应用、优缺点等方面进行综述,期望为器官移植和再生、药物筛选等应用提供参考。  相似文献   

8.
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.  相似文献   

9.
10.
The mechanisms by which human stem cells self‐organise into brain‐like tissues in 3D organoid culture are poorly understood. In this issue of The EMBO Journal, Renner and Lancaster et al demonstrate that in the absence of external stimuli, human cerebral organoids develop large forebrain structures that display specific landmarks of spatial and temporal patterning, including signalling centres producing known morphogens. The generation of cerebral organoids is therefore likely to reflect normal brain development.  相似文献   

11.
Three‐dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold‐based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte‐like cells using embryoid body protocol in the two‐dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte‐like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or ?EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate‐based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene‐expression patterns, we can conclude that alginate‐based 3D coculture system provided a highly efficient protocol for oocyte‐like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte‐like cell differentiation.  相似文献   

12.
13.
Three‐dimensional (3D) cell culture models are becoming increasingly popular in contemporary cancer research and drug resistance studies. Recently, scientists have begun incorporating cancer stem cells (CSCs) into 3D models and modifying culture components in order to mimic in vivo conditions better. Currently, the global cell culture market is primarily focused on either 3D cancer cell cultures or stem cell cultures, with less focus on CSCs. This is evident in the low product availability officially indicated for 3D CSC model research. This review discusses the currently available commercial products for CSC 3D culture model research. Additionally, we discuss different culture media and components that result in higher levels of stem cell subpopulations while better recreating the tumor microenvironment. In summary, although progress has been made applying 3D technology to CSC research, this technology could be further utilized and a greater number of 3D kits dedicated specifically to CSCs should be implemented.  相似文献   

14.
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.  相似文献   

15.
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human–parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three‐dimensional (3D)‐intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria‐like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D‐intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.  相似文献   

16.
The capacity of 3D organoids to mimic physiological tissue organization and functionality has provided an invaluable tool to model development and disease in vitro. However, conventional organoid cultures primarily represent the homeostasis of self-organizing stem cells and their derivatives. Here, we established a novel intestinal organoid culture system composed of 8 components, mainly including VPA, EPZ6438, LDN193189, and R-Spondin 1 conditioned medium, which mimics the gut epithelium regeneration that produces hyperplastic crypts following injury; therefore, these organoids were designated hyperplastic intestinal organoids (Hyper-organoids). Single-cell RNA sequencing identified different regenerative stem cell populations in our Hyper-organoids that shared molecular features with in vivo injury-responsive Lgr5+ stem cells or Clu+ revival stem cells. Further analysis revealed that VPA and EPZ6438 were indispensable for epigenome reprogramming and regeneration in Hyper-organoids, which functioned through epigenetically regulating YAP signaling. Furthermore, VPA and EPZ6438 synergistically promoted regenerative response in gut upon damage in vivo. In summary, our results demonstrated a new in vitro organoid model to study epithelial regeneration, highlighting the importance of epigenetic reprogramming that pioneers tissue repair.Subject terms: Intestinal stem cells, Regeneration  相似文献   

17.
18.
Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale‐up of stem cell culture is necessary. Bioreactors for dynamic three‐dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow‐fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 106 mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 106 mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four‐compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:141–151, 2016  相似文献   

19.
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)‐derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre‐labeled neural cells, especially in three‐dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC‐derived multicellular NPC aggregates labeled with micron‐sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70–80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post‐cryopreservation. MRI analysis showed comparable detectability for the MPIO‐labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO‐labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:510–521, 2015  相似文献   

20.
Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号