首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI‐interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl‐arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain‐containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor‐like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon‐derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality‐controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.  相似文献   

2.
3.
4.
5.
Stem cells function in niches, which consist of somatic cells that control the stem cells' self‐renewal, proliferation, and differentiation. Drosophila ovary germline niche consists of the terminal filament (TF) cells, cap cells, and escort stem cells; signaling from the TF cells and the cap cells is essential for maintenance of germline stem cells (GSCs). Here, we show that in the earwig Opisthocosmia silvestris, the female GSC niche is morphologically simple and consist of the TF cells and several structurally uniform escort cells. The most posterior cell of the TF (the basal cell of the TF) differs from remaining TF cells and is separated from the anterior region of the germarium by the processes of the escort cells, and consequently, does not contact the GSCs directly. We also show that between somatic cells of earwig niche argosome‐like vesicles and cytoneme‐like extensions are present. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.  相似文献   

8.
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age‐dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.  相似文献   

9.
10.
piRNAs guide PIWI proteins to silence transposons in animal germ cells. Reciprocal cycles of piRNA-directed RNA cleavage--catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (Ago3) in Drosophila melanogaster--expand the population of antisense piRNAs in response to transposon expression, a process called the Ping-Pong cycle. Heterotypic Ping-Pong between Aub and Ago3 ensures that antisense piRNAs predominate. We show that qin, a piRNA pathway gene whose protein product contains both E3 ligase and Tudor domains, colocalizes with Aub and Ago3 in nuage, a perinuclear structure implicated in transposon silencing. In qin mutants, less Ago3 binds Aub, futile Aub:Aub homotypic Ping-Pong prevails, antisense piRNAs decrease, many families of mobile genetic elements are reactivated, and DNA damage accumulates in nurse cells and oocytes. We propose that Qin enforces heterotypic Ping-Pong between Aub and Ago3, ensuring that transposons are silenced and maintaining the integrity of the germline genome.  相似文献   

11.
The Drosophila ovary provides an attractive model for studying the extrinsic or intrinsic factors that regulate the fate of germline stem cells (GSCs). Using this model, we identified a new role for Drosophila spaghetti (spag), encoding a homolog of human RNA polymerase II‐associated protein 3 (RPAP3), in regulating the fate of ovarian GSCs. Results from spag knockdown and genetic mosaic studies suggest that spag functions as an intrinsic factor for GSCs maintenance. Loss of Spag by, either spag RNAi or null mutation failed to trigger apoptosis in ovarian GSCs. Overexpression of spag led to negligible increases in the number of GSC/Cystoblast (CB) cells, suggesting that an excess of Spag is not sufficient to accelerate the proliferation of GSCs or delay CBs’ differentiation. Our study provides evidence supporting that spag is involved in adult stem cells maintenance. In addition, the RNAi screen results showed that knockdown of Hsp90, one of known Spag interacting partners, led to loss of ovarian GSCs in Drosophila. Heterozygous mutations in hsp90 (hsp90/+) dramatically accelerated the GSC loss in spag RNAi ovaries, suggesting that the Spag‐contained complex possibly plays an essential role in controlling the GSCs fate.  相似文献   

12.
PIWI‐interacting RNAs (piRNAs) are germ cell‐specific small RNAs essential for retrotransposon gene silencing and male germ cell development. In piRNA biogenesis, the endonuclease MitoPLD/Zucchini cleaves long, single‐stranded RNAs to generate 5′ termini of precursor piRNAs (pre‐piRNAs) that are consecutively loaded into PIWI‐family proteins. Subsequently, these pre‐piRNAs are trimmed at their 3′‐end by an exonuclease called Trimmer. Recently, poly(A)‐specific ribonuclease‐like domain‐containing 1 (PNLDC1) was identified as the pre‐piRNA Trimmer in silkworms. However, the function of PNLDC1 in other species remains unknown. Here, we generate Pnldc1 mutant mice and analyze small RNAs in their testes. Our results demonstrate that mouse PNLDC1 functions in the trimming of both embryonic and post‐natal pre‐piRNAs. In addition, piRNA trimming defects in embryonic and post‐natal testes cause impaired DNA methylation and reduced MIWI expression, respectively. Phenotypically, both meiotic and post‐meiotic arrests are evident in the same individual Pnldc1 mutant mouse. The former and latter phenotypes are similar to those of MILI and MIWI mutant mice, respectively. Thus, PNLDC1‐mediated piRNA trimming is indispensable for the function of piRNAs throughout mouse spermatogenesis.  相似文献   

13.
Argonaute 1 regulates the fate of germline stem cells in Drosophila   总被引:4,自引:0,他引:4  
The Argonaute-family proteins play crucial roles in small-RNA-mediated gene regulation. In Drosophila, previous studies have demonstrated that Piwi, one member of the PIWI subfamily of Argonaute proteins, plays an essential role in regulating the fate of germline stem cells (GSCs). However, whether other Argonaute proteins also play similar roles remains elusive. Here, we show that overexpression of Argonaute 1 (AGO1) protein, another subfamily (AGO) of the Argonaute proteins, leads to GSC overproliferation, whereas loss of Ago1 results in the loss of GSCs. Combined with germline clonal analyses of Ago1, these findings strongly support the argument that Ago1 plays an essential and intrinsic role in the maintenance of GSCs. In contrast to previous observations of Piwi function in the maintenance of GSCs, we show that AGO1 is not required for bag of marbles (bam) silencing and probably acts downstream or parallel of bam in the regulation of GSC fate. Given that AGO1 serves as a key component of the miRNA pathway, we propose that an AGO1-dependent miRNA pathway probably plays an instructive role in repressing GSC/cystoblast differentiation.  相似文献   

14.
Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self‐renewal) is crucial for tissue repair. Here, we showed that AMP‐activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self‐renewal. AMPKα1?/? MuSCs displayed a high self‐renewal rate, which impairs muscle regeneration. AMPKα1?/? MuSCs showed a Warburg‐like switch of their metabolism to higher glycolysis. We identified lactate dehydrogenase (LDH) as a new functional target of AMPKα1. LDH, which is a non‐limiting enzyme of glycolysis in differentiated cells, was tightly regulated in stem cells. In functional experiments, LDH overexpression phenocopied AMPKα1?/? phenotype, that is shifted MuSC metabolism toward glycolysis triggering their return to quiescence, while inhibition of LDH activity rescued AMPKα1?/? MuSC self‐renewal. Finally, providing specific nutrients (galactose/glucose) to MuSCs directly controlled their fate through the AMPKα1/LDH pathway, emphasizing the importance of metabolism in stem cell fate.  相似文献   

15.
The self‐renewal and differentiation of tissue stem cells must be tightly controlled. Unrestrained self‐renewal leads to over‐proliferation of stem cells, which may cause tumor formation, while uncontrolled differentiation leads to depletion of the stem cell pool. In this issue of The EMBO Journal, Demitrack et al (2015) show that the Notch pathway is a key regulator of Lgr5 antral stem cell self‐renewal and differentiation. Notch signaling controls the proliferation and differentiation of stem cells as well as gastric tissue growth, while uncontrolled Notch activity in stem cells leads to polyp formation.  相似文献   

16.
17.
18.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   

19.
20.
Germline stem cells (GSCs) in Drosophila are descendants of primordial germ cells (PGCs) specified during embryogenesis. The precise timing of GSC establishment in the testis has not been determined, nor is it known whether mechanisms that control GSC maintenance in the adult are involved in GSC establishment. Here, we determine that PGCs in the developing male gonad first become GSCs at the embryo to larval transition. This coincides with formation of the embryonic hub; the critical signaling center that regulates adult GSC behavior within the stem cell microenvironment (niche). We find that the Jak-STAT signaling pathway is activated in a subset of PGCs that associate with the newly-formed embryonic hub. These PGCs express GSC markers and function like GSCs, while PGCs that do not associate with the hub begin to differentiate. In the absence of Jak-STAT activation, PGCs adjacent to the hub fail to exhibit the characteristics of GSCs, while ectopic activation of the Jak-STAT pathway prevents differentiation. These findings show that stem cell formation is closely linked to development of the stem cell niche, and suggest that Jak-STAT signaling is required for initial establishment of the GSC population in developing testes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号