首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triple-negative breast cancer (TNBC) is an aggressive disease that lacks established markers to direct therapeutic intervention. Thus, these tumors are routinely treated with cytotoxic chemotherapies (e.g., anthracyclines), which can cause severe side effects that impact quality of life. Recent studies indicate that the retinoblastoma tumor suppressor (RB) pathway is an important determinant in TNBC disease progression and therapeutic outcome. Furthermore, new therapeutic agents have been developed that specifically target the RB pathway, potentially positioning RB as a novel molecular marker for directing treatment. The current study evaluates the efficacy of pharmacological CDK4/6 inhibition in combination with the widely used genotoxic agent doxorubicin in the treatment of TNBC. Results demonstrate that in RB-proficient TNBC models, pharmacological CDK4/6 inhibition yields a cooperative cytostatic effect with doxorubicin but ultimately protects RB-proficient cells from doxorubicin-mediated cytotoxicity. In contrast, CDK4/6 inhibition does not alter the therapeutic response of RB-deficient TNBC cells to doxorubicin-mediated cytotoxicity, indicating that the effects of doxorubicin are indeed dependent on RB-mediated cell cycle control. Finally, the ability of CDK4/6 inhibition to protect TNBC cells from doxorubicin-mediated cytotoxicity resulted in recurrent populations of cells specifically in RB-proficient cell models, indicating that CDK4/6 inhibition can preserve cell viability in the presence of genotoxic agents. Combined, these studies suggest that while targeting the RB pathway represents a novel means of treatment in aggressive diseases such as TNBC, there should be a certain degree of caution when considering combination regimens of CDK4/6 inhibitors with genotoxic compounds that rely heavily on cell proliferation for their cytotoxic effects.  相似文献   

2.
Triple-negative breast cancer (TNBC) is an aggressive disease that lacks established markers to direct therapeutic intervention. Thus, these tumors are routinely treated with cytotoxic chemotherapies (e.g., anthracyclines), which can cause severe side effects that impact quality of life. Recent studies indicate that the retinoblastoma tumor suppressor (RB) pathway is an important determinant in TNBC disease progression and therapeutic outcome. Furthermore, new therapeutic agents have been developed that specifically target the RB pathway, potentially positioning RB as a novel molecular marker for directing treatment. The current study evaluates the efficacy of pharmacological CDK4/6 inhibition in combination with the widely used genotoxic agent doxorubicin in the treatment of TNBC. Results demonstrate that in RB-proficient TNBC models, pharmacological CDK4/6 inhibition yields a cooperative cytostatic effect with doxorubicin but ultimately protects RB-proficient cells from doxorubicin-mediated cytotoxicity. In contrast, CDK4/6 inhibition does not alter the therapeutic response of RB-deficient TNBC cells to doxorubicin-mediated cytotoxicity, indicating that the effects of doxorubicin are indeed dependent on RB-mediated cell cycle control. Finally, the ability of CDK4/6 inhibition to protect TNBC cells from doxorubicin-mediated cytotoxicity resulted in recurrent populations of cells specifically in RB-proficient cell models, indicating that CDK4/6 inhibition can preserve cell viability in the presence of genotoxic agents. Combined, these studies suggest that while targeting the RB pathway represents a novel means of treatment in aggressive diseases such as TNBC, there should be a certain degree of caution when considering combination regimens of CDK4/6 inhibitors with genotoxic compounds that rely heavily on cell proliferation for their cytotoxic effects.  相似文献   

3.
刘子齐  左涛  徐锋  徐平 《生物工程学报》2021,37(7):2232-2239
多数癌症的发生发展都具有细胞周期高度活化的特性.细胞周期蛋白依赖性激酶4/6(CDK4/6)不仅在细胞有丝分裂中发挥了巨大作用,而且参与了衰老、凋亡和组蛋白调节等诸多生物学过程,并在多种癌症的发生发展中被异常激活.FDA批准了 Palbociclib、Ribociclib和Abemaciclib等3种靶向CDK4/6的...  相似文献   

4.
In adults, glioma is the most commonly occurring and invasive brain tumour. For malignant gliomas, the current advanced chemotherapy includes TMZ (temozolomide). However, a sizeable number of gliomas are unyielding to TMZ, hence, giving rise to an urgent need for more efficient treatment choices. Here, we report that cyclin‐dependent kinases 4 (CDK4) is expressed at significantly high levels in glioma cell lines and tissues. CDK4 overexpression enhances colony formation and proliferation of glioma cells and extends resistance to inhibition of TMZ‐mediated cell proliferation and induction of apoptosis. However, CDK4 knockdown impedes colony formation and cell proliferation, and enhances sensitivity of glioma cells to TMZ. The selective inhibition of CDK4/6 impedes glioma cell proliferation and induces apoptotic induction. The selective inhibitors of CDK4/6 may enhance glioma cell sensitivity to TMZ. We further showed the possible role of RB phosphorylation mediated by CDK4 for its oncogenic function in glioma. The growth of glioma xenografts was inhibited in vivo, through combination treatment, and corresponded to enhanced p‐RB levels, reduced staining of Ki‐67 and enhanced activation of caspase 3. Therefore, CDK4 inhibition may be a favourable strategy for glioma treatment and overcomes TMZ resistance.  相似文献   

5.
The therapeutic effects of abemaciclib (ABE), an inhibitor of cyclin- dependent kinases (CDK) 4/6, on the proliferation of two types of prostate cancer (PC) cells were revealed. In this study, in vitro cytotoxic and apoptotic effects of ABE on metastatic castration-resistant prostate cancer (mCRPC) androgen receptor (AR) negative PC-3 and AR mutant LNCaP PC cells were analyzed with WST-1, Annexin V, cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential, RT-PCR, western blot, and apoptosis protein array. ABE considerably inhibited the growth of PC cells in a dose-dependent manner (p<0.01) and caused significant apoptotic cell death through the suppression of CDK4/6-Cyclin D complex, ROS generation and depolarization of mitochondria membrane potential. However, PC-3 cells were more sensitive to ABE than LNCaP cells. Furthermore, the expression levels of several pro-apoptotic and cell cycle regulatory proteins were upregulated by ABE in especially PC-3 cells with the downregulation of apoptotic inhibitor proteins. Our results suggest that ABE inhibits PC cell growth and promotes apoptosis and thus ABE treatment may be a promising treatment strategy in especially mCRPC. Further preclinical and clinical studies should be performed to clarify the clinical use of ABE for the treatment of PC.  相似文献   

6.
Visualization of cell-cycle G1 phase for monitoring the early response of cell cycle specific drug remains challenging. In this study, we developed genetically engineered bioluminescent reporters by fusing full-length cyclin E to the C-terminal luciferase (named as CycE-Luc and CycE-Luc2). Next, HeLa cell line or an ER-positive breast cancer cell line MCF-7 was transfected with these reporters. In cellular assays, the bioluminescent signal of CycE-Luc and CycE-Luc2 was accumulated in the G1 phase and decreased after exiting from the G1 phase. The expression of CycE-Luc and CycE-Luc2 fusion protein was regulated in a cell cycle-dependent manner, which was mediated by proteasome ubiquitination and degradation. Next, our in vitro and in vivo experiment confirmed that the cell cycle arrested by anti-cancer agents (palbociclib or 5-FU) was monitored quantitatively and dynamically by bioluminescent imaging of these reporters in a real-time and non-invasive manner. Thus, these optical reporters could reflect the G1 phase alternation of cell cycle, and might become a future clinically translatable approach for predicting and monitoring response to palbociclib in patients with ER-positive breast cancer.  相似文献   

7.
Breast cancer is common worldwide, and the estrogen receptor-positive subtype accounts for approximately 70% of breast cancer in women. Tamoxifen and fulvestrant are drugs currently used for endocrinal therapy. Breast cancer exhibiting endocrine resistance can undergo metastasis and lead to the death of breast cancer patients. Drug repurposing is an active area of research in clinical medicine. We found that nafamostat mesylate, clinically used for patients with pancreatitis and disseminated intravascular coagulation, acts as an anti-cancer drug for endocrine-resistant estrogen receptor-positive breast cancer (ERPBC). Epigenetic repression of CDK4 and CDK6 by nafamostat mesylate induced apoptosis and suppressed the metastasis of ERPBC through the deacetylation of Histone 3 Lysine 27. A combination of nafamostat mesylate and CDK4/6 inhibitor synergistically overcame endocrine resistance in ERPBC. Nafamostat mesylate might be an essential adjuvant or alternative drug for the treatment of endocrine-resistant ERPBC due to the low cost-efficiency of the CDK4/6 inhibitor.  相似文献   

8.
Cellular senescence is a state of stable growth arrest and a desired outcome of tumor suppressive interventions. Treatment with many anti‐cancer drugs can cause premature senescence of non‐malignant cells. These therapy‐induced senescent cells can have pro‐tumorigenic and pro‐disease functions via activation of an inflammatory secretory phenotype (SASP). Inhibitors of cyclin‐dependent kinases 4/6 (CDK4/6i) have recently proven to restrain tumor growth by activating a senescence‐like program in cancer cells. However, the physiological consequence of exposing the whole organism to pharmacological CDK4/6i remains poorly characterized. Here, we show that exposure to CDK4/6i induces non‐malignant cells to enter a premature state of senescence dependent on p53. We observe in mice and breast cancer patients that the CDK4/6i‐induced senescent program activates only a partial SASP enriched in p53 targets but lacking pro‐inflammatory and NF‐κB‐driven components. We find that CDK4/6i‐induced senescent cells do not acquire pro‐tumorigenic and detrimental properties but retain the ability to promote paracrine senescence and undergo clearance. Our results demonstrate that SASP composition is exquisitely stress‐dependent and a predictor for the biological functions of different senescence subsets.  相似文献   

9.
The tumor suppressor gene p16INK4a is commonly found altered in numerous and different types of cancer. The encoded protein arrests cell cycle in G1 phase by binding to CDK4 and CDK6, inhibiting their kinase function. In 1995, a 20-residue peptide, extracted from p16INK4a protein sequence, was discovered that retains the cell cycle inhibition properties of the endogenous tumor suppressor. However, its structure has not been determined yet. In this article, the features of a theoretical structure of the peptide bound to CDK6 are reported. The complex was modeled from CDK6-p16INK4a X-ray crystal structure and through molecular dynamics. Final structure was assessed by comparing computed binding free energy changes, when single-alanine substitutions were brought about on the peptide, to experimental data. Better concordance was obtained when including a high level of solvation effects. Solute-solvent vdW energy and electrostatic energy between solute and first shells of water, computed through a force field and considering explicit waters, were also to be included to achieve reasonably good concordance between theoretical and experimental data.  相似文献   

10.
Palbociclib is a CDK4/6 inhibitor approved for metastatic estrogen receptor‐positive breast cancer. In addition to G1 cell cycle arrest, palbociclib treatment results in cell senescence, a phenotype that is not readily explained by CDK4/6 inhibition. In order to identify a molecular mechanism responsible for palbociclib‐induced senescence, we performed thermal proteome profiling of MCF7 breast cancer cells. In addition to affecting known CDK4/6 targets, palbociclib induces a thermal stabilization of the 20S proteasome, despite not directly binding to it. We further show that palbociclib treatment increases proteasome activity independently of the ubiquitin pathway. This leads to cellular senescence, which can be counteracted by proteasome inhibitors. Palbociclib‐induced proteasome activation and senescence is mediated by reduced proteasomal association of ECM29. Loss of ECM29 activates the proteasome, blocks cell proliferation, and induces a senescence‐like phenotype. Finally, we find that ECM29 mRNA levels are predictive of relapse‐free survival in breast cancer patients treated with endocrine therapy. In conclusion, thermal proteome profiling identifies the proteasome and ECM29 protein as mediators of palbociclib activity in breast cancer cells.  相似文献   

11.
12.
We have investigated the potential for the p16‐cyclin D‐CDK4/6‐retinoblastoma protein pathway to be exploited as a therapeutic target in melanoma. In a cohort of 143 patients with primary invasive melanoma, we used fluorescence in situ hybridization to detect gene copy number variations (CNVs) in CDK4, CCND1, and CDKN2A and immunohistochemistry to determine protein expression. CNVs were common in melanoma, with gain of CDK4 or CCND1 in 37 and 18% of cases, respectively, and hemizygous or homozygous loss of CDKN2A in 56%. Three‐quarters of all patients demonstrated a CNV in at least one of the three genes. The combination of CCND1 gain with either a gain of CDK4 and/or loss of CDKN2A was associated with poorer melanoma‐specific survival. In 47 melanoma cell lines homozygous loss, methylation or mutation of CDKN2A gene or loss of protein (p16INK4A) predicted sensitivity to the CDK4/6 inhibitor PD0332991, while RB1 loss predicted resistance.  相似文献   

13.
Background: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6 i), abemaciclib, palbociclib, and ribociclib, have been FDA-approved for the treatment of hormone receptor-positive (HR+), HER2−negative (HER2−) advanced breast cancer (aBC). This targeted therapy has revived hope in those aBC patients who did not respond to standard therapies. Interestingly, when administered as a single agent, CDK4/6 modulated several peripheral blood cells after a short-course treatment of 28 days. However, the impact of these immune effects has yet to be thoroughly investigated. Methods: We administered abemaciclib, palbociclib, and ribociclib monotherapy to 23 patients with HR+/HER2− metastatic breast cancer. The aim is to investigate the impact of on-treatment modifications on peripheral blood cells and their composite scores in patients after a 28-day course of CDK4/6 i alone. Results: In the current study, we observed a significant decrease in neutrophils (p-value < 0.001) for patients treated with abemaciclib, palbociclib, and ribociclib. An overall decrease of Tregs was observed and potentially linked to palbociclib treatment. The neutrophile to lymphocyte (N/L) ratio was also decreased overall and potentially linked to abemaciclib and palbociclib treatment. Platelets were decreased in patients administered with abemaciclib. Notably, the radiometabolic response was available only for those patients treated with ribociclib and abemaciclib, and only those lesions treated with ribociclib reached statistical relevance. Conclusions: Our study strongly supports the notion that CDK4/6 inhibitors induce tumour immune modulation. N/L ratio and platelet levels decreased due to treatment. Future studies should test whether patients would benefit from immunomodulators in association with CDK4/6 agents in a larger clinical trial. Moreover, the CDK4/6-induced immune modulation could also be considered a potential predictive clinical factor in HR+/HER2− advanced breast cancer.  相似文献   

14.
15.
The storage of fruits and vegetables under a controlled atmosphere can induce low oxygen stress, which can lead to post‐harvest losses through the induction of disorders such as core breakdown and browning. To gain better understanding of the metabolic response of plant organs to low oxygen, cultured tomato cells (Lycopersicum esculentum) were used as a model system to study the metabolic stress response to low oxygen (0 and 1 kPa O2). By adding 13C labelled glucose, changes in the levels of polar metabolites and their 13C label accumulation were quantified. Low oxygen stress altered the metabolite profile of tomato cells, with the accumulation of the intermediates of glycolysis in addition to increases in lactate and sugar alcohols. 13C label data showed reduced label accumulation in almost all metabolites except lactate and some sugar alcohols. The results showed that low oxygen stress in tomato cell culture activated fermentative metabolism and sugar alcohol synthesis while inhibiting the activity of the TCA cycle and the biosynthesis of metabolites whose precursors are derived from central metabolism, including fluxes to most organic acids, amino acids and sugars.  相似文献   

16.
One of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML) is t(8;21). Although patients with t(8;21) AML have a more favorable prognosis than other cytogenetic subgroups, relapse is still common and novel therapeutic approaches are needed. A recent study showed that t(8;21) AML is characterized by CCND2 deregulation and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells. In this study, we examined the in vivo effects of co-inhibiting CDK4/6 and autophagy. We used a mouse model in which t(8;21)-positive Kasumi-1 cells were subcutaneously inoculated into NOD/Shi-scid IL2Rgnull mice. The mice were treated with the autophagy inhibitor chloroquine (CQ), a CDK4/6 inhibitor (either abemaciclib or palbociclib), or a CDK4/6 inhibitor plus CQ. After 20 days of treatment, tumor volume was measured, and immunostaining and transmission electron microscopy observations were performed. There was no change in tumor growth in CQ-treated mice. However, mice treated with a CDK4/6 inhibitor plus CQ had significantly less tumor growth than mice treated with a CDK4/6 inhibitor alone. CDK4/6 inhibitor treatment increased the formation of autophagosomes. The number of single-strand DNA-positive (apoptotic) cells was significantly higher in the tumors of mice treated with a CDK4/6 inhibitor plus CQ than in mice treated with either CQ or a CDK4/6 inhibitor. These results show that CDK4/6 inhibition induces autophagy, and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells in vivo. The results suggest that inhibiting CDK4/6 and autophagy could be a novel and promising therapeutic strategy in t(8;21) AML.  相似文献   

17.
The extent to which individual plants utilise nitrate and ammonium, the two principal nitrogen sources in the rhizosphere, is variable and many species require a balance between the two forms for optimal growth. The effects of nitrate and ammonium on gene expression, enzyme activity and metabolite composition have been documented extensively with the aim of understanding the way in which plant cells respond to the different forms of nitrogen, but ultimately the impact of these changes on the organisation and operation of the central metabolic network can only be addressed by analysing the fluxes supported by the network. Accordingly steady‐state metabolic flux analysis was used to define the metabolic phenotype of a heterotrophic Arabidopsis thaliana cell culture grown in Murashige and Skoog and ammonium‐free media, treatments that influenced growth and biomass composition. Fluxes through the central metabolic network were deduced from the redistribution of label into metabolic intermediates and end products observed when cells were labelled with [1‐13C]‐, [2‐13C]‐ or [13C6]glucose, in tandem with 14C‐measurements of the net accumulation of biomass. Analysis of the flux maps showed that: (i) flux through the oxidative pentose phosphate pathway varied independently of the reductant demand for biosynthesis, (ii) non‐plastidic processes made a significant and variable contribution to the provision of reducing power for the plastid, and (iii) the inclusion of ammonium in the growth medium increased cell maintenance costs, in agreement with the futile cycling model of ammonium toxicity. These conclusions highlight the complexity of the metabolic response to a change in nitrogen nutrition.  相似文献   

18.
19.
Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ13C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moisture change. Leymus chinensis and Stipa spp. were sampled from Inner Mongolia along a dry‐wet transect, and some of these species were transplanted to an area with a moisture gradient. For Stipa spp., the slope of foliar δ13C and mean annual precipitation along the transect was significantly steeper than that of foliar δ13C and mean annual precipitation after the watering treatment. For L. chinensis, there was a general decreasing trend in foliar δ13C under the different (increasing) watering levels; however, its populations showed an irregular relationship between foliar δ13C and moisture origin. Therefore, support for our hypothesis was obtained from Stipa spp., but not from L. chinensis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号