首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes, nano‐sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC‐peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T‐cell activation in vitro. When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN‐γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN‐γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.  相似文献   

2.
The severity and intensity of autoimmune disease in immune dysregulation, polyendocrinopathy, enteropathy, X‐linked (IPEX) patients and in scurfy mice emphasize the critical role played by thymus‐derived regulatory T cells (tTregs) in maintaining peripheral immune tolerance. However, although tTregs are critical to prevent lethal autoimmunity and excessive inflammatory responses, their suppressive mechanism remains elusive. Here, we demonstrate that tTregs selectively inhibit CD27/CD70‐dependent Th1 priming, while leaving the IL‐12‐dependent pathway unaffected. Immunized mice depleted of tTregs showed an increased response of IFN‐γ‐secreting CD4+ T cells that was strictly reliant on a functional CD27/CD70 pathway. In vitro studies revealed that tTregs downregulate CD70 from the plasma membrane of dendritic cells (DCs) in a CD27‐dependent manner. CD70 downregulation required contact between Tregs and DCs and resulted in endocytosis of CD27 and CD70 into the DC. These findings reveal a novel mechanism by which tTregs can maintain tolerance or prevent excessive, proinflammatory Th1 responses.  相似文献   

3.
Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.  相似文献   

4.
Insufficient folate status may be related to the increasing prevalence of immune- or inflammation-related chronic diseases. To investigate the effects of folate on immune regulation, we examined the impact of folate deficiency (FD) on dendritic cell (DC) maturation and function and, thus, T helper (Th) cells differentiation. First, bone marrow-derived DCs (BMDCs) were generated from BALB/c mice bone marrow cells cultured in folate-containing (F-BMDCs) or folate-deficient (FD-BMDCs) medium. FD-BMDC displayed more immature phenotype including reduced levels of major histocompatibility complex class II (MHC II), co-stimulatory molecules and characteristic of higher endocytic activity. FD-BMDC produced less IL-12p70 and proinflammatory cytokines in response to lipopolysaccharide. This aberrant DC maturation due to FD resulted in reduced BMDC-induced Th cell activity and lower IL-2, IFNγ, IL-13 and IL-10 productions. Further in vivo study confirmed significantly lower IFNγ and IL-10 productions by T cells and showed higher splenic naïve Th and lower memory T, effector T and regulatory T cell (Treg) percentages in mice fed with the FD diet for 13 weeks. To investigate the role of DCs on T cell activity, splenic DCs (spDC) from FD mice were cocultured with Th cells. The FD spDC had lower MHC II and CD80 expressions and subsequently impaired DC-induced Th differentiation, shown as decreased cytokine productions. This study demonstrated that folate deficiency impaired DC functions and, thus, Th differentiation and responses, suggesting that folate plays a crucial role in maintaining Th cells homeostasis.  相似文献   

5.
Vitamin A-deficient populations have impaired T cell-dependent antibody responses. Dendritic cells (DCs) are the most proficient antigen-presenting cells to naïve T cells. In the mouse, CD11b+ myeloid DCs stimulate T helper (Th) 2 antibody immune responses, while CD8α+ lymphoid DCs stimulate Th1 cell-mediated immune responses. Therefore, we hypothesized that vitamin A-deficient animals would have decreased numbers of myeloid DCs and unaffected numbers of lymphoid DCs. We performed dietary depletion of vitamin A in C57BL/6 J male and female mice and used multicolor flow cytometry to quantify immune cell populations of the spleen, with particular focus on DC subpopulations. We show that vitamin A-depleted animals have increased polymorphonuclear neutrophils, lymphoid DCs, and memory CD8+ T cells and decreased CD4+ T lymphocytes. Therefore, vitamin A deficiency alters splenic DC subpopulations, which may contribute to skewed immune responses of vitamin A-deficient populations.  相似文献   

6.
Background: The growing concern over the emergence of antibiotic‐resistant Helicobacter pylori infection is propelling the development of an efficacious vaccine to control this highly adaptive organism. Aim: We studied the use of a dendritic cell (DC)‐based vaccine against H. pylori infection in mice. Methods: The cellular immune responses to murine bone marrow‐derived DCs pulsed with phosphate‐buffered saline (PBS‐DC) or live H. pylori SS1 (HP‐DC) were assessed in vitro and in vivo. The protective immunity against H. pylori SS1 oral challenge was compared between HP‐DC or PBS‐DC immunized mice. The effect of regulatory T‐cell (Treg) depletion by anti‐CD25 antibody on HP‐DC vaccine efficacy was also evaluated. Results: HP‐DC induced a Th1‐dominant response in vitro. In vivo, HP‐DC immunized mice were characterized by a mixed Th1/Th2 peripheral immune response. However, in the stomach, HP‐DC immunized mice expressed a higher level of IFN‐γ compared to PBS‐DC immunized mice; no difference was found for interleukin‐5 expressions in the stomach. A lower bacterial colonization post‐H. pylori challenge was observed in HP‐DC immunized mice compared to PBS‐DC immunized mice with no significant difference in gastritis severity. H. pylori‐specific Th1 response and protective immunity were further enhanced in vivo by depletion of Treg with anti‐CD25 antibody. Conclusion: DC‐based anti‐H. pylori vaccine induced H. pylori‐specific helper T‐cell responses capable of limiting bacterial colonization. Our data support the critical role of effector cellular immune response in the development of H. pylori vaccine.  相似文献   

7.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

8.
Immunosuppression associated with chronic helminth infections has been documented in many studies and regulatory T (Treg) cells have been shown to mediate the nematode-induced immunosuppression, but the role of dendritic cells (DCs) in the induction of Treg cell response and immunosuppression has not yet been fully determined. We analysed the response and function of DCs in mesenteric lymph node (MLNs) of mice infected with a gastrointestinal nematode, Heligmosomoides polygyrus, and observed a substantial expansion of DCs in MLNs following the infection. The CD11c+ DCs in MLNs of infected mice showed reduced expression of co-stimulatory molecules CD40, CD86 and MHC-II, and production of inflammatory cytokines IL-12 and IL-6. Analysis of MLN DC subsets defined by CD11c and CD45RB expression showed that the CD11clowCD45RBmid subset increased rapidly following H. polygyrus infection and the CD11cmidCD45RBhigh subset expanded from the third week after infection. In the co-culture of sorted DC subsets with ovalbumin-(OVA-)specific T cell receptor (TCR) transgenic CD4+ T cells, CD11clowCD45RBmid DCs induced a low proliferation response and a high level of IL-10 production in CD4+ T cells, whereas CD11cmidCD45RBhigh DCs induced more IFN-γ and IL-4 producing CD4+ T cells. Intracellular staining revealed that CD11clowCD45RBmid DCs promoted CD4+ Foxp3+ differentiations. These results indicate that nematode infections selectively induce expansion of the CD11clowCD45RBmid regulatory DC subset that promotes development of Foxp3+ and IL-10 producing Treg cells. The Treg cell responses and immunoregulatory cytokines induced by this regulatory DC subset in turn play an important role in mediation of the nematode-induced immunosuppression.  相似文献   

9.
Cross‐presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross‐presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC‐I trafficking and antigen cross‐presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC‐I molecules. The knockdown of Rab22a also hampered the cross‐presentation of soluble, particulate and T. gondii‐associated antigens, but not the endogenous MHC‐I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC‐I endocytic trafficking, which is crucial for efficient cross‐presentation by DCs.  相似文献   

10.
Migration of dendritic cells (DCs) plays an important role in T‐cell‐mediated adaptive immune responses. Lipopolysaccharide (LPS) sensed by Toll‐like receptor 4 (TLR4) serves as a signal for DC migration. We analyzed LPS‐induced DC volume changes preceding the directed movement towards chemoattractants. Treatment with LPS resulted in rapid, prolonged cell swelling in wild‐type (WT), but not in TLR4?/? bone marrow‐derived (BM) DCs indicating that TLR4 signaling is essential for LPS‐induced swelling. As a consequence, LPS‐treatment enhanced the migratory activity along a chemokine (CCL21)‐gradient in WT, but not in TLR4‐deficient BMDCs suggesting that the LPS/TLR4‐induced swelling response facilitates DC migration. Moreover, the role of calcium‐activated potassium channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS‐challenged BMDCs. We found that the LPS‐induced swelling of KCa3.1‐deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS‐induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1‐deficient DCs. Finally, directed migration of LPS‐challenged KCa3.1‐deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS‐induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS‐activated DCs as an important feature of the adaptive immune response.
  相似文献   

11.
Enteroviruses often cause mild disease, yet are also linked to development of autoimmune diabetes. Dendritic cells (DCs) shape both innate and adaptive immune responses, including anti-viral responses. How different human DC subsets shape anti-viral responses, whether they have complementary or overlapping functions and how this relates to autoimmune responses is largely unknown. We used enterovirus-infected β-cells and freshly isolated human myeloid DC (mDC) subsets as a model for autoimmune type 1 diabetes. Our data show that both the BDCA1+ and BDCA3+ mDC subsets engulf mock- as well as virus-infected β-cells, albeit BDCA1+ mDCs are more efficient. Uptake of enterovirus-infected, but not mock-infected cells, activated both DC subsets as indicated by the induction of co-stimulatory molecules and secretion of type I and type III interferons. Both subsets produced similar amounts of interferon-α, yet the BDCA3+ DC were superior in IFN-λ production. The BDCA1+ mDCs more strongly upregulated PD-L1, and were superior in IL-12 and IL-10 production as compared to the BDCA3+ DC. Despite lack of IL-12 production by the BDCA3+ DC, both BDCA1+ and BDCA3+ DCs activated T cells in allogeneic mixed lymphocyte reaction towards a Th1-type reactivity while suppressing Th2-associated cytokines.  相似文献   

12.
《Cytotherapy》2014,16(6):826-834
Background aimsEx vivo–generated monocyte-derived dendritic cells (DCs) matured with monophosphoryl lipid A (MPLA) and interferon-γ (IFN-γ) can be used as cancer immunotherapy. MPLA/IFN-γ DCs induce Th1 T cell responses and have migratory capacity. Different culture regimens have been used for generation of immunotherapeutic DCs, with varying results. In the present study, culture conditions for MPLA/IFN-γ–matured type I DCs were optimized for clinical application.MethodsDCs were generated from monocytes in the clinical grade culture media CellGro DC, AIM V or X-VIVO 15 in the absence or presence of 2% human serum (HS) and matured with the use of MPLA/IFN-γ. DC yield and DC functionality were assessed. DC functionality was determined by means of analysis of cytokines in culture supernatant, migratory capacity, expression of co-stimulatory molecules, T cell stimulatory capacity of DCs and T helper cell (Th) polarization by the DCs.ResultsDCs generated in the presence of 2% HS produced low amounts of pro-inflammatory cytokines and could not migrate irrespective of the medium used. In the absence of HS, MPLA/IFN-γ DCs generated in X-VIVO did not migrate either. MPLA/IFN-γ DCs generated in AIM V have slightly lower capacity to induce Th1 cells than do DCs generated in CellGro or X-VIVO.ConclusionsAddition of HS to different GMP culture media is detrimental for pro-inflammatory DC maturation and migration. In the absence of serum, CellGro is the most optimal medium tested for generation of migratory and Th1-inducing MPLA/IFN-γ DCs for cancer immunotherapy.  相似文献   

13.
Tissue invasive helminth infections and tuberculosis (TB) are co-endemic in many parts of the world and can trigger immune responses that might antagonize each other. We have previously shown that helminth infections modulate the Th1 and Th17 responses to mycobacterial-antigens in latent TB. To determine whether helminth infections modulate antigen-specific and non-specific immune responses in active pulmonary TB, we examined CD4+ and CD8+ T cell responses as well as the systemic (plasma) cytokine levels in individuals with pulmonary TB with or without two distinct helminth infections—Wuchereria bancrofti and Strongyloides stercoralis infection. By analyzing the frequencies of Th1 and Th17 CD4+ and CD8+ T cells and their component subsets (including multifunctional cells), we report a significant diminution in the mycobacterial–specific frequencies of mono- and multi–functional CD4+ Th1 and (to a lesser extent) Th17 cells when concomitant filarial or Strongyloides infection occurs. The impairment in CD4+ and CD8+ T cell cytokine responses was antigen-specific as polyclonal activated T cell frequencies were equivalent irrespective of helminth infection status. This diminution in T cell responses was also reflected in diminished circulating levels of Th1 (IFN-γ, TNF-α and IL-2)- and Th17 (IL-17A and IL-17F)-associated cytokines. Finally, we demonstrate that for the filarial co-infections at least, this diminished frequency of multifunctional CD4+ T cell responses was partially dependent on IL-10 as IL-10 blockade significantly increased the frequencies of CD4+ Th1 cells. Thus, co-existent helminth infection is associated with an IL-10 mediated (for filarial infection) profound inhibition of antigen-specific CD4+ T cell responses as well as protective systemic cytokine responses in active pulmonary TB.  相似文献   

14.
15.
Dendritic cells (DCs) are pivotal in the development of specific T-cell responses to control pathogens, as they govern both the initiation and the polarization of adaptive immunity. To investigate the capacities of migrating DCs to respond to pathogens, we used physiologically generated lymph DCs (L-DCs). The flexible polarization of L-DCs was analysed in response to Salmonella or helminth secretions known to induce different T cell responses. Mature conventional CD1b+ L-DCs showed a predisposition to promote pro-inflammatory (IL-6), pro-Th1 (IL-12p40) and anti-inflammatory (IL-10) responses which were amplified by Salmonella, and limited to only IL-6 induction by helminth secretions. The other major population of L-DCs did not express the CD1b molecule and displayed phenotypic features of immaturity compared to CD1b+ L-DCs. Salmonella infection reduced the constitutive expression of TNF-α and IL-4 mRNA in CD1b- L-DCs, whereas this expression was not affected by helminth secretions. The cytokine response of T cells promoted by L-DCs was analysed in T cell subsets after co-culture with Salmonella or helminth secretion-driven CD1b+ or CD1b- L-DCs. T cells preferentially expressed the IL-17 gene, and to a lesser extent the IFN-γ and IL-10 genes, in response to Salmonella-driven CD1b+ L-DCs, whereas a preferential IL-10, IFN-γ and IL-17 gene expression was observed in response to Salmonella-driven CD1b- L-DCs. In contrast, a predominant IL-4 and IL-13 gene expression by CD4+ and CD8+ T cells was observed after stimulation of CD1b+ and CD1b- L-DCs with helminth secretions. These results show that mature conventional CD1b+ L-DCs maintain a flexible capacity to respond differently to pathogens, that the predisposition of CD1b- L-DCs to promote a Th2 response can be oriented towards other Th responses, and finally that the modulation of migrating L-DCs responses is controlled more by the pathogen encountered than the L-DC subsets.  相似文献   

16.
Suppressor of cytokine signaling (SOCS1/JAB) has been shown to play an important role in regulating dendritic cell (DC) function and suppressing inflammatory diseases and systemic autoimmunity. However, role of SOCS1 in DCs for the initiation of Th cell response has not been clarified. Here we demonstrate that SOCS1-deficient DCs induce stronger Th1-type responses both in vitro and in vivo. SOCS1-deficient DCs induced higher IFN-gamma production from naive T cells than wild-type (WT) DCs in vitro. Lymph node T cells also produced a higher amount of IFN-gamma when SOCS1-deficient bone marrow-derived DCs (BMDCs) were transferred in vivo. Moreover, SOCS1(-/-) BMDCs raised more effective anti-tumor immunity than WT BMDCs. Microarray analysis revealed that IFN-inducible genes were highly expressed in SOCS1-deficient DCs without IFN stimulation, suggesting hyper STAT1 activation in SOCS1(-/-) DCs. These phenotypes of SOCS1-deficient DCs were similar to those of CD8alpha(+) DCs, and in the WT spleen, SOCS1 is expressed at higher levels in the Th2-inducing CD4(+) DC subset, relative to the Th1-inducing CD8alpha(+) DC subset. We propose that reduction of the SOCS1 gene expression in DCs leads to CD8alpha(+) DC-like phenotype which promotes Th1-type hyperresponses.  相似文献   

17.
Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs) and in the induction of immune responses. However, relatively little is known about their functions in innate/acquired responses to complex eukaryotic microorganisms, including helminth parasites. That Schistosoma mansoni eggs activate myeloid DCs through TLR2 and TLR3 has been shown by us and others, but the consequences of this combined activation are still unknown. We show that the engagement of both TLR2 and TLR3 by schistosome eggs is important for the production of inflammatory cytokines and interferon-stimulated genes, such as some chemokines, by DCs. Strikingly, DCs sensitized with ovalbumin in the presence of parasite eggs dramatically reduce the release of Th2-type cytokines by ovalbumin-specific T lymphocytes, an effect that fully depends on TLR3. Finally, although TLR2 and TLR3 have no role in host resistance and in egg-induced granuloma formation in S. mansoni-infected mice, they individually and additionally increase the Th1/Th2 balance of the immune response. Thus, TLR2 and TLR3 sensing is required to shape the immune response during murine schistosomiasis, but is dispensable to control infection and pathology.  相似文献   

18.
To better understand the relative efficiencies of using different TLR ligand-activated DCs to induce human CD4+ T lymphocyte responses, human DCs were activated with two viral and two bacterial TLR ligands, and their production of IL12, TNFα, and IL10 was examined. While the two viral TLR ligands (ssRNA and dsRNA) induced DC production of detectable levels of IL12p70, DCs activated by the two bacterial TLR ligands (LPS and flagellin) induced increased proliferation of human allogeneic naïve CD4+ T cells. dsRNA-activated DCs induced increased Th1 and decreased Th2 differentiation, resulting in extremely polarized responses relative to those induced by unstimulated and other TLR ligand-activated DCs. Neutralization of IL12p70 abrogated most of the Th1 skewing induced by all TLR ligand-activated moDCs. Collectively, these results demonstrate that dsRNA-activated DCs induce more highly polarized human Th1 responses than the other TLR ligand-activated DCs tested here. These results have implications for TLR ligands in immunotherapy.  相似文献   

19.
20.
Brucella abortus elicits a vigorous Th1 immune response which activates cytotoxic T lymphocytes. However, B. abortus persists in its hosts in the presence of CD8+ T cells, establishing a chronic infection. Here, we report that B. abortus infection of human monocytes/macrophages inhibited the IFN‐γ‐induced MHC‐I cell surface expression. This phenomenon was dependent on metabolically active viable bacteria. MHC‐I down‐modulation correlated with the development of diminished CD8+ cytotoxic T cell response as evidenced by the reduced expression of the activation marker CD107a on CD8+ T lymphocytes and a diminished percentage of IFN‐γ‐producing CD8+ T cells. Inhibition of MHC‐I expression was not due to changes in protein synthesis. Rather, we observed that upon B. abortus infection MHC‐I molecules were retained within the Golgi apparatus. Overall, these results describe a novel mechanism based on the intracellular sequestration of MHC‐I molecules whereby B. abortus would avoid CD8+ cytotoxic T cell responses, evading their immunological surveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号