首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrial fibrosis serves as an important contributor to atrial fibrillation (AF). Recent data have suggested that microRNA‐30c (miR‐30c) is involved in fibrotic remodelling and cancer development, but the specific role of miR‐30c in atrial fibrosis remains unclear. The purpose of this study was to investigate the role of miR‐30c in atrial fibrosis and its underlying mechanisms through in vivo and in vitro experiments. Our results indicate that miR‐30c is significantly down‐regulated in the rat abdominal aortic constriction (AAC) model and in the cellular model of fibrosis induced by transforming growth factor‐β1 (TGF‐β1). Overexpression of miR‐30c in cardiac fibroblasts (CFs) markedly inhibits CF proliferation, differentiation, migration and collagen production, whereas decrease in miR‐30c leads to the opposite results. Moreover, we identified TGFβRII as a target of miR‐30c. Finally, transferring adeno‐associated virus 9 (AAV9)‐miR‐30c into the inferior vena cava of rats attenuated fibrosis in the left atrium following AAC. These data indicate that miR‐30c attenuates atrial fibrosis via inhibition of CF proliferation, differentiation, migration and collagen production by targeting TGFβRII, suggesting that miR‐30c might be a novel potential therapeutic target for preventing atrial fibrosis.  相似文献   

2.
During the course of breast cancer progression, normally dormant tumour‐promoting effects of transforming growth factor β (TGFβ), including migration, invasion, and metastasis are unmasked. In an effort to identify mechanisms that regulate the pro‐migratory TGFβ ‘switch’ in mammary epithelial cells in vitro, we found that TGFβ stimulates the phosphorylation of Smad1 and Smad5, which are typically associated with bone morphogenetic protein signalling. Mechanistically, this phosphorylation event requires the kinase activity and, unexpectedly, the L45 loop motif of the type I TGFβ receptor, ALK5, as evidenced by studies using short hairpin RNA‐resistant ALK5 mutants in ALK5‐depleted cells and in vitro kinase assays. Functionally, Smad1/5 co‐depletion studies demonstrate that this phosphorylation event is essential to the initiation and promotion of TGFβ‐stimulated migration. Moreover, this phosphorylation event is preferentially detected in permissive environments such as those created by tumorigenic cells or oncogene activation. Taken together, our data provide evidence that TGFβ‐stimulated Smad1/5 phosphorylation, which occurs through a non‐canonical mechanism that challenges the notion of selective Smad phosphorylation by ALK5, mediates the pro‐migratory TGFβ switch in mammary epithelial cells.  相似文献   

3.
Prostate transmembrane protein androgen induced 1 (PMEPA1) has been reported to promote cancer progression. Metastasis is the main factor leading to cancer progression and poor prognosis, and at the beginning of metastasis, epithelial‐to‐mesenchymal transition (EMT) is a crucial activation. However, the relationship between PMEPA1 and EMT in colorectal cancer metastasis is still poorly understood. In this study, we first testified that PMEPA1 expresses higher in tumour than normal tissue in Gene Expression Omnibus database, in the Cancer Genome Atlas (TCGA) as well as in the clinical data we collected. Moreover, the higher expression was associated with poor prognosis. We furthermore demonstrated PMEPA1 promotes colorectal cancer metastasis and EMT in vivo and in vitro. We found that PMEPA1 activates the bone morphogenetic proteins (BMP) signalling of TGF‐β signalling resulting in promoting EMT and accelerating the proliferation and metastasis of colorectal cancer.  相似文献   

4.
5.
TGFβ1 is very important in the synthesis and degradation of extracellular matrix, and also in the mediation of human lung fibroblasts proliferation, and miR‐29 plays an important role in this process. To explore the interactions of miR‐29 family members and TGFβ1, the effects of transforming growth factor TGFβ1 on the expression of miR‐29 and whether miR‐29 is involved in pro‐survival signaling pathways mediated by TGFβ1 were examined in human lung fibroblasts. Treatment of the human embryonic lung fibroblast cell line IMR90 with TGFβ1 caused a decrease in expression of miR‐29a/b/c by real‐time PCR analysis. TGFβ1 stimulation increased cell proliferation, colony formation and up‐regulated expression of COL1A1; transfecting with miR‐29a/b/c mimics reverse TGFβ1‐induced phenotype changes in IMR90 cells. Western blot analyses showed that TGFβ1 treatment unchanged total protein expression levels of PI3K or AKT, but the expression levels of p‐PI3K, p‐AKT, and COL1A1 were increased; and miR‐19a/b/c mimics interfering blocked phosphorylation of PI3K or AKT and decreased expression of COL1A1 after TGFβ1 treatment. The results indicate that TGFβ1 beta uses the PI3k‐Akt pathway in these embryonic fibroblasts and miR29 blocks this activation pathway. It indicates a novel biological function of the PI3K‐Akt pathway in IMR90. Elevated expression of miR‐29 may play an important role in the pathogenesis of diseases related to fibrogenic reactions in human lung fibroblasts. J. Cell. Biochem. 114: 1336–1342, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
8.
9.
10.
11.
12.
TGF‐β1 (transforming growth factor‐β1) plays a central role in regulating proliferation, migration and differentiation of dental pulp cells during the repair process after tooth injury. Our previous study showed that p38 mitogen‐activated protein kinase may act downstream of TGF‐β1 signalling to effect the differentiation of dental pulp cells. However, the molecular mechanisms that trigger and regulate the process remain to be elucidated. TGF‐β1 interacts with signalling pathways such as Wnt/β‐catenin and Rho to induce diverse biological effects. TGF‐β1 activates β‐catenin signalling, increases β‐catenin nuclear translocation and interacts with LEF/TCF to regulate gene expression. Morphologic changes in response to TGF‐β1 are associated with activation of Rho GTPases, but are abrogated by inhibitors of Rho‐associated kinase, a major downstream target of Rho. These results suggest that the Wnt/β‐catenin and Rho pathways may mediate the downstream events of TGF‐β1 signalling.  相似文献   

13.
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome‐wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage. Birth Defects Research (Part C) 102:37–51, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
Pulmonary fibrosis is characterized by an extensive activation of fibrogenic cells and deposition of extracellular matrix (ECM). Transforming growth factor (TGF)‐β1 plays a pivotal role in the pathogenesis of pulmonary fibrosis, probably through the epithelial‐ to‐mesenchymal transition (EMT) and ECM production. The present study investigates potential mechanism by which TGF‐β1 induces EMT and ECM production in the fibrogenesis of human lung epithelial cells during pulmonary fibrosis. The expression of EMT phenotype and other proteins relevant to fibrogenesis were measured and the cell bio‐behaviours were assessed using Cell‐IQ Alive Image Monitoring System. We found that TGF‐β1‐induced EMT was accompanied with increased collagen I deposition, which may be involved in the regulation of connective tissue growth factor (CTGF) and phosphoinositide 3‐kinase (PI3K) signalling pathway. Treatment with PI3K inhibitors significantly attenuated the TGF‐β1‐ induced EMT, CTGF expression and collagen I synthesis in lung epithelial cells. The interference of CTGF expression impaired the basal and TGF‐β1‐stimulated collagen I deposition, but did not affect the process of EMT. Our data indicate that the signal pathway of TGF‐β1/PI3K/CTGF plays an important role in the fibrogenesis of human lung epithelial cells, which may be a novel therapeutic approach to prevent and treat pulmonary fibrosis.  相似文献   

16.
17.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

18.
19.
20.
Oxysterols, such as 7β‐hydroxy‐cholesterol (7β‐OH) and cholesterol‐5β,6β‐epoxide (β‐epoxide), may have a central role in promoting atherogenesis. This is thought to be predominantly due to their ability to induce apoptosis in cells of the vascular wall and in monocytes/macrophages. Although there has been extensive research regarding the mechanisms through which oxysterols induce apoptosis, much remains to be clarified. Given that experimental evidence has long associated alterations of calcium (Ca2+) homeostasis to apoptotic cell death, the aim of the present study was to determine the influence of intracellular Ca2+ changes on apoptosis induced by 7β‐OH and β‐epoxide. Ca2+ responses in differentiated U937 cells were assessed by epifluorescence video microscopy, using the ratiometric dye fura‐2. Over 15‐min exposure of differentiated U937 cells to 30 μM of 7β‐OH induced a slow but significant rise in fura‐2 ratio. The Ca2+ channel blocker nifedipine and the chelating agent EGTA blocked the increase in cytoplasmic Ca2+. Moreover, dihydropyridine (DHP) binding sites identified with BODIPY‐FLX‐DHP were blocked following pretreatment with nifedipine, indicating that the influx of Ca2+ occurred through L‐type channels. However, following long‐term incubation with 7β‐OH, elevated levels of cytoplasmic Ca2+ were not maintained and nifedipine did not provide protection against apoptotic cell death. Our results indicate that the increase in Ca2+ may be an initial trigger of 7β‐OH–induced apoptosis, but following chronic exposure to the oxysterol, the influence of Ca2+ on apoptotic cell death appears to be less significant. In contrast, Ca2+ did not appear to be involved in β‐epoxide–induced apoptosis. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:324–332, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20295  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号