首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amino acid sensitive TOR pathway from yeast to mammals   总被引:1,自引:0,他引:1  
Dann SG  Thomas G 《FEBS letters》2006,580(12):2821-2829
The target of rapamycin (TOR) is an ancient effector of cell growth that integrates signals from growth factors and nutrients. Two downstream effectors of mammalian TOR, the translational components S6K1 and 4EBP1, are commonly used as reporters of mTOR activity. The conical signaling cascade initiated by growth factors is mediated by PI3K, PKB, TSC1/2 and Rheb. However, the process through which nutrients, i.e., amino acids, activate mTOR remains largely unknown. Evidence exists for both an intracellular and/or a membrane bound sensor for amino acid mediated mTOR activation. Research in eukaryotic models, has implicated amino acid transporters as nutrient sensors. This review describes recent advances in nutrient signaling that impinge on mTOR and its targets including hVps34, class III PI3K, a transducer of nutrient availability to mTOR.  相似文献   

2.
Although all cells depend upon nutrients they acquire from the extracellular space, surprisingly little is known about how nutrient uptake is regulated in mammalian cells. Most nutrients are brought into cells by means of specific transporter proteins. In yeast, the expression and trafficking of a wide variety of nutrient transporters is controlled by the TOR (target of rapamycin) kinase. Consistent with this, recent studies in mammalian cells have shown that mTOR (mammalian TOR) and the related protein, PI3K (phosphoinositide 3-kinase), play central roles in coupling nutrient transporter expression to the availability of extrinsic trophic and survival signals. In the case of lymphocytes, it has been particularly well established that these extrinsic signals stimulate cell growth and proliferation in part by regulating nutrient transporter expression. The ability of growth factors to control nutrient access may also play an important role in tumour suppression: the non-homoeostatic growth of tumour cells requires that nutrient transporter expression is uncoupled from trophic factor availability. Also supporting a link between nutrient transporter expression levels and oncogenesis, several recent studies demonstrate that nutrient transporter expression drives, rather than simply parallels, cellular metabolism. This review summarizes the evidence that regulated nutrient transporter expression plays a central role in cellular growth control and highlights the implications of these findings for human disease.  相似文献   

3.
The mammalian target of rapamycin (mTOR) is a kinase that responds to a myriad of signals, ranging from nutrient availability and energy status, to cellular stressors, oxygen sensors and growth factors. The finely tuned response of mTOR to these stimuli results in alterations to cell metabolism and cell growth. Recent studies of conditional knockouts of mTOR pathway components in mice have affirmed the role of mTOR signaling in energy balance, both at the cell and whole organism levels. Such studies have also highlighted a role for mTOR in stem cell homeostasis and lifespan determination. Here, we discuss the molecular mechanisms of TOR signaling and review recent in vitro and in vivo studies of mTOR tissue-specific activities in mammals.  相似文献   

4.
A Schmidt  T Beck  A Koller  J Kunz    M N Hall 《The EMBO journal》1998,17(23):6924-6931
The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells.  相似文献   

5.
Richard C. Wang 《FEBS letters》2010,584(7):1417-1426
Cell growth is regulated by two antagonistic processes: TOR signaling and autophagy. These processes integrate signals including growth factors, amino acids, and energy status to ensure that cell growth is appropriate to environmental conditions. Autophagy responds indirectly to the cellular milieu as a downstream inhibitory target of TOR signaling and is also directly controlled by nutrient availability, cellular energy status, and cell stress. The control of cell growth by TOR signaling and autophagy are relevant to disease, as altered regulation of either pathway results in tumorigenesis. Here we give an overview of how TOR signaling and autophagy integrate nutritional status to regulate cell growth, how these pathways are coordinately regulated, and how dysfunction of this regulation might result in tumorigenesis.  相似文献   

6.
The TSC/Rheb/TOR signaling pathway plays important roles in growth and cell cycle regulation. The main player TOR belongs to the PI3K-related protein kinase family. Recent studies utilizing fission yeast Tor2 have led to the identification of a number of amino acid changes that lead to inactivation as well as activation of TOR kinase. Also, constitutive active mutations in its upstream regulator, Rheb, have been identified. Isolation and characterization of temperature sensitive Tor2 mutants have established that this kinase functions as a key switch that determines cell fate between growth and sexual development. Introduction of Tor2 activating mutations into mTOR conferred nutrient independent activation of mTOR. Interestingly, these studies point to regions of TOR kinase important for its function.  相似文献   

7.
8.
mTOR: from growth signal integration to cancer, diabetes and ageing   总被引:5,自引:0,他引:5  
In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.  相似文献   

9.
The expanding TOR signaling network   总被引:25,自引:0,他引:25  
Cell growth (increase in cell mass or size) is tightly coupled to nutrient availability, growth factors and the energy status of the cell. The target of rapamycin (TOR) integrates all three inputs to control cell growth. The discovery of upstream regulators of TOR (AMPK, the TSC1-TSC2 complex and Rheb) has provided new insights into the mechanism by which TOR integrates its various inputs. A recent finding in flies reveals that TOR controls not only growth of the cell in which it resides (cell-autonomous growth) but also the growth of distant cells, thereby determining organ and organism size in addition to the size of isolated cells. In yeast and mammals, the identification of two structurally and functionally distinct multiprotein TOR complexes (TORC1 and TORC2) has provided a molecular basis for the complexity of TOR signaling. Furthermore, TOR has emerged as a regulator of growth-related processes such as development, aging and the response to hypoxia. Thus, TOR is part of an intra- and inter-cellular signaling network with a remarkably broad role in eukaryotic biology.  相似文献   

10.
The Ser/Thr phosphatase PP2A is a set of multisubunit enzymes that regulate many cellular processes. In yeast, the PP2A regulatory subunit Tap42 forms part of the target of rapamycin (TOR) signaling pathway that links nutrient and energy availability to cell growth. The physiological intersection between the mammalian orthologs of Tap42 and TOR, alpha4 and mTOR, has not been fully characterized. We used two in vivo models of liver growth in the rat, late gestation fetal development and regeneration after partial hepatectomy, to explore the regulation of the alpha4-containing form of PP2A. The alpha4/PP2A catalytic subunit (alpha4/PP2A-C) complex was present in both fetal and adult liver extracts. There was a trend towards higher levels of alpha4 protein in fetal liver, but the complex was more abundant in adult liver. Fractionation of extracts by ion exchange chromatography and transient transfection of the AML12 mouse hepatic cell line indicated that alpha4 associates with PP2A-C but that these complexes have low catalytic activity with both peptide and protein substrates. alpha4 was able to associate with forms of PP2A-C that were both methylated and non-methylated at the carboxy-terminus. The mTOR inhibitor rapamycin did not block the formation of alpha4/PP2A-C in liver or hepatic cells, nor did it appear to modulate PP2A activity. Furthermore, sensitivity to the growth inhibitory effects of rapamycin among a panel of hepatic cell lines did not correlate with levels of alpha4 or alpha4/PP2A-C. Our results indicate that the yeast Tap42/TOR paradigm is not conserved in hepatic cells.  相似文献   

11.
Metabolic rate and the subsequent production of reactive oxygen species are thought to contribute to the rate of aging in a wide range of species. The target of rapamycin (TOR) is a well conserved serine/threonine kinase that regulates cell growth in response to nutrient status. Here we demonstrate that in mammalian cells the mammalian TOR (mTOR) pathway plays a significant role in determining both resting oxygen consumption and oxidative capacity. In particular, we demonstrate that the level of complex formation between mTOR and one of its known protein partners, raptor, correlated with overall mitochondrial activity. Disruption of this complex following treatment with the mTOR pharmacological inhibitor rapamycin lowered mitochondrial membrane potential, oxygen consumption, and ATP synthetic capacity. Subcellular fractionation revealed that mTOR as well as mTOR-raptor complexes can be purified in the mitochondrial fraction. Using two-dimensional difference gel electrophoresis, we further demonstrated that inhibiting mTOR with rapamycin resulted in a dramatic alteration in the mitochondrial phosphoproteome. RNA interference-mediated knockdown of TSC2, p70 S6 kinase (S6K1), raptor, or rictor demonstrates that mTOR regulates mitochondrial activity independently of its previously identified cellular targets. Finally we demonstrate that mTOR activity may play an important role in determining the relative balance between mitochondrial and non-mitochondrial sources of ATP generation. These results may provide insight into recent observations linking the TOR pathway to life span regulation of lower organisms.  相似文献   

12.
TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.  相似文献   

13.
The TOR (target of rapamycin) pathway controls cell growth in response to nutrient availability in eukaryotic cells. Inactivation of TOR function by rapamycin or nutrient exhaustion is accompanied by triggering various cellular mechanisms aimed at overcoming the nutrient stress. Here we report that in Saccharomyces cerevisiae the protein kinase C (PKC)-mediated mitogen-activated protein kinase pathway is regulated by TOR function because upon specific Tor1 and Tor2 inhibition by rapamycin, Mpk1 is activated rapidly in a process mediated by Sit4 and Tap42. Osmotic stabilization of the plasma membrane prevents both Mpk1 activation by rapamycin and the growth defect that occurs upon the simultaneous absence of Tor1 and Mpk1 function, suggesting that, at least partially, TOR inhibition is sensed by the PKC pathway at the cell envelope. This process involves activation of cell surface sensors, Rom2, and downstream elements of the mitogen-activated protein kinase cascade. Rapamycin also induces depolarization of the actin cytoskeleton through the TOR proteins, Sit4 and Tap42, in an osmotically suppressible manner. Finally, we show that entry into stationary phase, a physiological situation of nutrient depletion, also leads to the activation of the PKC pathway, and we provide further evidence demonstrating that Mpk1 is essential for viability once cells enter G(0).  相似文献   

14.
mTOR signaling in disease   总被引:3,自引:0,他引:3  
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase and a central controller of cell growth, metabolism and aging. Mammalian TOR (mTOR) is activated in response to nutrients, growth factors and cellular energy. Dysregulated mTOR signaling has been implicated in major disease. Here we review recent findings on the role of mTOR in cancer, metabolic disorders, neurological diseases, and inflammation.  相似文献   

15.
16.
Growing roles for the mTOR pathway   总被引:35,自引:0,他引:35  
The mammalian TOR (mTOR) pathway is a key regulator of cell growth and proliferation and increasing evidence suggests that its deregulation is associated with human diseases, including cancer and diabetes. The mTOR pathway integrates signals from nutrients, energy status and growth factors to regulate many processes, including autophagy, ribosome biogenesis and metabolism. Recent work identifying two structurally and functionally distinct mTOR-containing multiprotein complexes and TSC1/2, rheb, and AMPK as upstream regulators of mTOR is beginning to reveal how mTOR can sense diverse signals and produce a myriad of responses.  相似文献   

17.
Target of Rapamycin (TOR) mediates a signalling pathway that couples amino acid availability to S6 kinase (S6K) activation, translational initiation and cell growth. Here, we show that tuberous sclerosis 1 (Tsc1) and Tsc2, tumour suppressors that are responsible for the tuberous sclerosis syndrome, antagonize this amino acid-TOR signalling pathway. We show that Tsc1 and Tsc2 can physically associate with TOR and function upstream of TOR genetically. In Drosophila melanogaster and mammalian cells, loss of Tsc1 and Tsc2 results in a TOR-dependent increase of S6K activity. Furthermore, although S6K is normally inactivated in animal cells in response to amino acid starvation, loss of Tsc1-Tsc2 renders cells resistant to amino acid starvation. We propose that the Tsc1-Tsc2 complex antagonizes the TOR-mediated response to amino acid availability. Our studies identify Tsc1 and Tsc2 as regulators of the amino acid-TOR pathway and provide a new paradigm for how proteins involved in nutrient sensing function as tumour suppressors.  相似文献   

18.
mTOR regulation of autophagy   总被引:1,自引:0,他引:1  
Chang Hwa Jung 《FEBS letters》2010,584(7):1287-21
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although TOR has been known as a key regulator of autophagy for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This review discusses the recent advances in understanding of the mechanism by which TOR regulates autophagy with focus on mammalian TOR (mTOR) and its regulation of the autophagy machinery.  相似文献   

19.
Lysosomes are essential organelles that function to degrade and recycle unwanted, damaged and toxic biological components. Lysosomes also act as signalling platforms in activating the nutrient‐sensing kinase mTOR. mTOR regulates cellular growth, but it also helps to maintain lysosome identity by initiating lysosomal tubulation through a process termed autophagosome‐lysosome reformation (ALR). Here we identify a lysosomal pool of phosphatidylinositol 3‐phosphate that, when depleted by specific inhibition of the class III phosphoinositide 3‐kinase VPS34, results in prolonged lysosomal tubulation. This tubulation requires mTOR activity, and we identified two direct mTOR phosphorylation sites on UVRAG (S550 and S571) that activate VPS34. Loss of these phosphorylation sites reduced VPS34 lipid kinase activity and resulted in an increase in number and length of lysosomal tubules. In cells in which phosphorylation at these UVRAG sites is disrupted, the result of impaired lysosomal tubulation alongside ALR activation is massive cell death. Our data imply that ALR is critical for cell survival under nutrient stress and that VPS34 is an essential regulatory element in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号