共查询到20条相似文献,搜索用时 11 毫秒
1.
The unique histidine in OSCP subunit of F‐ATP synthase mediates inhibition of the permeability transition pore by acidic pH 下载免费PDF全文
Salvatore Antonucci Barbara Spolaore Federico Fogolari Valeria Petronilli Valentina Giorgio Michela Carraro Fabio Di Lisa Michael Forte Ildikó Szabó Giovanna Lippe Paolo Bernardi 《EMBO reports》2018,19(2):257-268
The permeability transition pore (PTP) is a Ca2+‐dependent mitochondrial channel whose opening causes a permeability increase in the inner membrane to ions and solutes. The most potent inhibitors are matrix protons, with channel block at pH 6.5. Inhibition is reversible, mediated by histidyl residue(s), and prevented by their carbethoxylation by diethylpyrocarbonate (DPC), but their assignment is unsolved. We show that PTP inhibition by H+ is mediated by the highly conserved histidyl residue (H112 in the human mature protein) of oligomycin sensitivity conferral protein (OSCP) subunit of mitochondrial F1FO (F)‐ATP synthase, which we also show to undergo carbethoxylation after reaction of mitochondria with DPC. Mitochondrial PTP‐dependent swelling cannot be inhibited by acidic pH in H112Q and H112Y OSCP mutants, and the corresponding megachannels (the electrophysiological counterpart of the PTP) are insensitive to inhibition by acidic pH in patch‐clamp recordings of mitoplasts. Cells harboring the H112Q and H112Y mutations are sensitized to anoxic cell death at acidic pH. These results demonstrate that PTP channel formation and its inhibition by H+ are mediated by the F‐ATP synthase. 相似文献
2.
Jan B. Hoek Elisabeth Walajtys-Rode Xiaolan Wang 《Molecular and cellular biochemistry》1997,174(1-2):173-179
Ca2+ functions as an intracellular signal to transfer hormonal messages to different cellular compartments, including mitochondria, where it activates intramitochondrial Ca2+-dependent enzymes. However, excessive mitochondrial Ca2+ uptake can promote the mitochondrial permeability transition (MPT), a process known to be associated with cell injury. The factors controlling mitochondrial Ca2+ uptake and release in intact cells are poorly understood. In this paper, we investigate mitochondrial Ca2+ accumulation in intact hepatocytes in response to the elevation of cytosolic Ca2+ levels ([Ca2+]c) induced either by a hormonal stimulus (vasopressin), or by thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump. After stimulation, cells were rapidly permeabilized for the determination of the mitochondrial Ca2+ content (Ca2+_m) and to analyze the susceptibility of the mitochondria to undergo the MPT. Despite very similar levels of [Ca2+]c elevation, vasopressin and thapsigargin had markedly different effects on mitochondrial Ca2+ accumulation. Vasopressin caused a rapid (< 90 sec), but modest (< 2 fold) increase in Ca2+m that was not further increased during prolonged incubations, despite a sustained [Ca2+]c elevation. By contrast, thapsigargin induced a net Ca2+ accumulation in mitochondria that continued for up to 30 min and reached Ca2+_m levels 10–20 fold over basal. Accumulation of mitochondrial Ca2+ was accompanied by a markedly increased susceptibility to undergo the MPT. Both mitochondrial Ca2+ accumulation and MPT activation were modulated by treatment of the cells with inhibitors of protein kineses and phosphatases. The results indicate that net mitochondrial Ca2+ uptake in response to hormonal stimulation is regulated by processes that depend on protein kinase activation. These controls are inoperative when the cytosol is flooded by Ca2+ through artificial means, enabling mitochondria to function as a Ca2+ sink under these conditions. (Mol Cell Biochem 174: 173–179, 1997) 相似文献
3.
Mitochondria isolated from engineered mice lacking Cyclophilin D (CypD), a component of the Permeability Transition Pore (PTP) complex, can still undergo a Ca2?+?-dependent but Cyclosporin A-insensitive permeabilization of the inner membrane. Higher Ca2?+? concentrations are required than for wild-type controls. The characteristics of the pore formed in this system were not known, and it has been proposed that they might differ substantially from those of the normal PTP. To test this hypothesis, we have characterized the PTP of isogenic wild-type and CypD? mouse liver mitochondria in patch clamp experiments, which allow biophysical characterization. The pores observed in the two cases, very similar to those of rat liver mitochondria, are indistinguishable according to a number of criteria. The only clear difference is in their sensitivity to Cyclosporin A. CypD is thus shown to be an auxiliary, modulatory component of the “standard” PTP, which forms and has essentially the same properties even in its absence. The observations suggest that Ca2?+?, CypD, and presumably other inducers and inhibitors act at the level of an activation or assembly process. Activation is separate and upstream of the gating observable on a short or medium-term time scale. Once the pore is activated, its molecular dynamics and biophysical properties may thus be predicted not to depend on the details of the induction process. 相似文献
4.
Single-channel electrophysiological recordings from rat liver mitoplast membranes showed that the 1.3-nS mitochondrial megachannel was activated by Ca++ and inhibited by Mg++, Cyclosporin A, and ADP, probably acting at matrix-side sites. These agents are known to modulate the so-called mitochondrial permeability transition pore (Gunter, T. E., and Pfeiffer, D. R. (1990)Am. J. Physiol.
258, C755–C786) in the same manner. Furthermore, the megachannel is unselective, and the minimum pore size calculated from its conductance is in agreement with independent estimates of the minimum size of the permeabilization pore. The results support the tentative identification of the megachannel with the pore believed to be involved in the permeabilization process.Abbreviations used: PT: permeability transition; PTP: permeability transition pore; MMC: mitochondrial megachannel; IMAC: inner membrane anion channel. PA: permeability of ion A. CSP: Cyclosporin A. 相似文献
5.
In vivo inhibition of the mitochondrial H+‐ATP synthase in neurons promotes metabolic preconditioning 下载免费PDF全文
Laura Formentini Marta P Pereira Laura Sánchez‐Cenizo Fulvio Santacatterina José J Lucas Carmen Navarro Alberto Martínez‐Serrano José M Cuezva 《The EMBO journal》2014,33(7):762-778
A key transducer in energy conservation and signaling cell death is the mitochondrial H+‐ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H+‐ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H+‐ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid‐induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl‐xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H+‐ATP synthase as a target to prevent neuronal cell death. 相似文献
6.
Caroline E. Dewar Silke Oeljeklaus Christoph Wenger Bettina Warscheid Andr Schneider 《The Journal of biological chemistry》2022,298(4)
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b. 相似文献
7.
Irini Pateraki Marta Renato Joaquín Azcón‐Bieto Albert Boronat 《The Plant journal : for cell and molecular biology》2013,74(1):74-85
Chromoplasts are non‐photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non‐photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ–subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ–subunits. Silencing of this atypical γ–subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ–subunit present in tomato leaf and green fruit chloroplasts by the atypical γ–subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle. 相似文献
8.
Lishu Guo 《The Journal of biological chemistry》2022,298(5)
The mitochondrial permeability transition pore (PTP) is a Ca2+-dependent megachannel that plays an important role in mitochondrial physiology and cell fate. Cyclophilin D (CyPD) is a well-characterized PTP regulator, and its binding to the PTP favors pore opening. It has previously been shown that p53 physically interacts with CyPD and opens the PTP during necrosis. Accumulating studies also suggest that the F-ATP synthase contributes to the regulation and formation of the PTP. F-ATP synthase IF1 (mitochondrial ATP synthase inhibitory factor 1) is a natural inhibitor of F-ATP synthase activity; however, whether IF1 participates in the modulation of PTP opening is basically unknown. Here, we demonstrate using calcium retention capacity assay that IF1 overexpression promotes mitochondrial permeability transition via opening of the PTP. Intriguingly, we show that IF1 can interact with the p53–CyPD complex and facilitate cell death. We also demonstrate that the presence of IF1 is necessary for the formation of p53–CyPD complex. Therefore, we suggest that IF1 regulates the PTP via interaction with the p53–CyPD complex, and that IF1 is necessary for the inducing effect of p53–CyPD complex on PTP opening. 相似文献
9.
García N Zazueta C Carrillo R Correa F Chávez E 《Molecular and cellular biochemistry》2000,209(1-2):119-123
Addition of 5 M copper to rat kidney mitochondria enhances the effect of carboxyatractyloside and oleate on pore opening, in a cyclosporin A-sensitive fashion. The effects of the pair copper-carboxyatractyloside were observed on matrix Ca2+ efflux, mitochondrial swelling and on the transmembrane electric gradient. The effect of Cu2+ emphasizes the importance of membrane thiol groups located, probably, in the ADP/ATP translocase (ANT), on permeability transition. It was also found that Cu2+ does not block the fluorescent label of ANT by eosin 5-maleimide, but abolishes the inhibition by CAT on the labeling. This suggests that the binding of Cu2+ to cysteine residues of ANT promotes a conformational change in the carrier, strengthening the effect of CAT and oleate on membrane leakage. 相似文献
10.
Katarzyna Niedzwiecka Renata Tisi Sara Penna Malgorzata Lichocka Danuta Plochocka Roza Kucharczyk 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(1):117-131
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis. 相似文献
11.
Mitochondria undergo a permeability transition (PT), i.e., become nonselectively permeable to small solutes, in response to a wide range of conditions/compounds. In general, opening of the permeability transition pore (PTP) is Ca2+- and Pi-dependent and is blocked by cyclosporin A (CsA), trifluoperazine (TFP), ADP, and butylated hydroxytoluene (BHT). Gudz and coworkers have reported [7th European Bioenergetics Conference, EBEC Short Reports (1992)7, 125], however, that, under some conditions, BHT increases mitochondrial permeability via a process that may not share all of these characteristics. Specifically, they determined that the BHT-induced permeability transition was independent of Ca2+ and was insensitive to CsA. We have used mitochondrial swelling to compare in greater detail the changes in permeability induced by BHT and by Ca2+ plus Pi with the following results. (1) The dependence of permeability on BHT concentration is triphasic: there is a threshold BHT concentration (ca. 60 nmol BHT/ mg mitochondrial protein) below which no increase occurs; BHT enhances permeability in an intermediate concentration range; and at high BHT concentrations (> 120 nmol/mg) permeability is again reduced. (2) The effects of BHT depend on the ratio of BHT to mitochondrial protein. (3) Concentrations of BHT too low to induce swelling block the PT induced by Ca2+ and Pi. (4) The dependence of the Ca2+-triggered PT on Pi concentration is biphasic. Below a threshold of 50–100 M, no swelling occurs. Above this threshold swelling increases rapidly. (5) Pi levels too low to support the Ca2+-induced PT inhibit BHT-induced swelling. (6) Swelling induced by BHT can bestimulated by agents and treatments that block the PT induced by Ca2+ plus Pi. These data suggest that BHT and Ca2+ plus Pi, increase mitochondrial permeability via two mutually exclusive mechanisms. 相似文献
12.
The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore 下载免费PDF全文
Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging‐related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro‐apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. 相似文献
13.
Oleksandr Lytovchenko Nataliia Naumenko Silke Oeljeklaus Bernhard Schmidt Karina von der Malsburg Markus Deckers Bettina Warscheid Martin van der Laan Peter Rehling 《The EMBO journal》2014,33(15):1624-1638
Mitochondrial F1Fo‐ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear‐ and mitochondria‐encoded subunits. Whereas chaperones for formation of the matrix‐exposed hexameric F1‐ATPase core domain have been identified, insight into how the nuclear‐encoded F1‐domain assembles with the membrane‐embedded Fo‐region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1‐module and peripheral stalk, but not with the assembled F1Fo‐ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1‐module to the membrane embedded Fo‐domain. We conclude that INAC represents a matrix‐exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo‐ATP synthase. 相似文献
14.
The mechanism by which non-esterified long-chain fatty acids (FFA) promote mitochondrial permeability transition (MPT) is not clear. We examined with energized rat liver mitochondria the role of two possible actions of FFA in MPT, (i) the reduction of the transmembrane potential (Δψ) and (ii) the increase of the negative surface charge of the inner mitochondrial membrane [Broekemeier, K.M. and Pfeiffer, D.G., Biochemistry 43, (1995) 16440–16449]. It was found that the ability of FFA to stimulate large amplitude swelling is clearly related to their uncoupling activity. Moreover, compared with classical protonophores (FCCP) FFA increase the sensitivity of the pore opening process to Δψ changes. In addition, FFA interact like their thioester derivatives in a structure-dependent manner with the ADP/ATP carrier (measured as inhibition of [3H]atractyloside binding to the AAC protein). It is suggested that not only the protonophoric action of FFA, but also a presumable stabilization of the ‘cytosolic' conformation of AAC contribute to the FFA-promoted MPT. 相似文献
15.
H Plun-Favreau V S Burchell K M Holmstr?m Z Yao E Deas K Cain V Fedele N Moisoi M Campanella L Miguel Martins N W Wood A V Gourine A Y Abramov 《Cell death & disease》2012,3(6):e335
Loss of the mitochondrial protease HtrA2 (Omi) in mice leads to mitochondrial dysfunction, neurodegeneration and premature death, but the mechanism underlying this pathology remains unclear. Using primary cultures from wild-type and HtrA2-knockout mice, we find that HtrA2 deficiency significantly reduces mitochondrial membrane potential in a range of cell types. This depolarisation was found to result from mitochondrial uncoupling, as mitochondrial respiration was increased in HtrA2-deficient cells and respiratory control ratio was dramatically reduced. HtrA2-knockout cells exhibit increased proton translocation through the ATP synthase, in combination with decreased ATP production and truncation of the F1 α-subunit, suggesting the ATP synthase as the source of the proton leak. Uncoupling in the HtrA2-deficient mice is accompanied by altered breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical ischaemia. We propose that this vulnerability may ultimately cause the neurodegeneration observed in these mice. 相似文献
16.
17.
The mitochondrial permeability transition pore: an evolving concept critical for cell life and death
Giampaolo Morciano Natalia Naumova Piotr Koprowski Sara Valente Vilma A. Sardão Yaiza Potes Alessandro Rimessi Mariusz R. Wieckowski Paulo J. Oliveira 《Biological reviews of the Cambridge Philosophical Society》2021,96(6):2489-2521
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology. 相似文献
18.
Kong D Xu L Yu Y Zhu W Andrews DW Yoon Y Kuo TH 《Molecular and cellular biochemistry》2005,272(1-2):187-199
The regulation of mitochondrial permeability transition (MPT) is essential for cell survival. Un-controlled opening of the MPT pore is often associated with cell death. Anti-death protein Bcl-2 can block MPT as assessed by the enhanced capacity of mitochondria to accumulate and retain Ca2+. We report here that two proteins of the mitochondrial fission machinery, dynamin-related protein (Drp1) and human mitochondrial fission protein (hFis1), have an antagonistic effect on Bcl-2. Drp1, with the assistance of hFis1, sensitizes cells to MPT by reducing the mitochondrial Ca2+ retention capacity (CRC). While the reduction of CRC by Drp1/hFis1 is linked to mitochondrial fission, the antagonism between Bcl-2 and Drp1 appears to be mediated by mutually exclusive interactions of the two proteins with hFis1. The complexity of protein–protein interactions demonstrated in the present study suggests that in addition to the previously described role of Bcl-2 in the control of apoptosis, Bcl-2 may also participate directly or indirectly in the regulation of mitochondrial fission. 相似文献
19.
The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal 总被引:19,自引:0,他引:19
Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported speciesin vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress. 相似文献
20.
Traba J Del Arco A Duchen MR Szabadkai G Satrústegui J 《Cell death and differentiation》2012,19(4):650-660
Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy. 相似文献