首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol has been implicated in the pathogenesis of Alzheimer's disease, both through intracellular effects, and through an extracellular effect due to its physical interaction with plaque associated amyloid. Epidemiology studies have implicated high cholesterol as a risk factor for AD, and have shown that the use of cholesterol reducing agents (statins) can be protective against the disease. We, and others have shown that cholesterol levels modulate the processing of the amyloid precursor protein (APP) both in vivo and in vitro, affecting the accumulation of Abeta (A) peptides which may directly impact the risk of AD. This review describes the biology of sterols, and identifies how cholesterol may exacerbate the pathogenesis of AD. Data from in vivo and in vitro studies will then be presented to describe how treatments aimed at modulating lipid levels may be efficacious in treating AD.  相似文献   

2.
In recent years numerous data suggest that vascular risk factors may be play a role in Alzheimer’s disease (AD). To determine the association of AD with methylentetrahydrofulate reductase (MTHFR) and angiotensin converting enzyme (ACE) as two main vascular risk factors, we examined MTHFR C677T and ACE insertion/deletion (I/D) gene polymorphism in 117 late-onset AD cases and 125 controls. We found no difference in ACE I/D genotype distribution between AD cases and control (P > 0.05) but there was a significant association between AD and the common MTHFR polymorphism C677T. The T allele conferred an increased risk of AD compared to carrying a C allele (P = 0.001, OR = 1.97, 95% CI: 1.3–2.09). Our result suggests a significant increase in risk of AD in cases with the MTHFR T allele, atleast in the Iranian population.  相似文献   

3.
4.
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathogenesis. Although regulatory T cells (Tregs) have previously been studied in AD, their role remains controversial, likely owing to patient heterogeneity. Thus, we recruited adult AD patients and age‐matched healthy controls, and assessed their filaggrin (FLG) genotype, serum IgE level, and eczema area and severity index (EASI). We found increased proportions of all circulating Treg subpopulations in AD patients. Moreover, we show positive correlations between circulating Tregs and serum IgE FLG null mutations limited the expansion of both memory and effector Tregs and enhanced that of recently thymus‐emigrated Tregs. Furthermore, proportions of circulating Th2‐ or Th17‐Tregs but not Th1‐Tregs were increased in AD patients, and accentuated by FLG null mutations, thereby mimicking the immune deviation observed in Th cell populations. Moreover, ICOS+ Tregs showed reduced production of interleukin‐10, suggesting impaired immunosuppression in AD. The level of demethylation of FOXP3i1, which reflects the stability of FOXP3 expression, was similar in the blood and skin of AD patients and healthy controls. Overall, these results show that Tregs may participate into AD pathogenesis and that FLG null mutations exert further modifications on specific subpopulations of circulating Tregs.  相似文献   

5.
6.
The abnormal deposition of amyloid‐β (Aβ) peptides in the brain is the main neuropathological hallmark of Alzheimer's disease (AD). Amyloid deposits are formed by a heterogeneous mixture of Aβ peptides, among which the most studied are Aβ40 and Aβ42. Aβ40 is abundantly produced in the human brain, but the level of Aβ42 is remarkably increased in the brain of AD patients. Aside from Aβ40 and Aβ42, recent data have raised the possibility that Aβ43 peptides may be instrumental in AD pathogenesis. Besides its length, whether the Aβ aggregated form accounts for the neurotoxicity is also particularly controversial. Aβ fibrils are generally considered as key pathogenic substances in AD pathogenesis. Nevertheless, recent data implicated soluble Aβ oligomers as the main cause of synaptic dysfunction and memory loss in AD. To further address this uncertainty, we analyzed the neurotoxicity of different Aβ species and Aβ forms at the cellular level. The results showed that Aβ42 could form oligomers significantly faster than Aβ40 and Aβ43 and Aβ42 oligomers showed the greatest level of neurotoxicity. Regardless of the length of Aβ peptides, Aβ oligomers induced significantly higher cytotoxicity compared with the other two Aβ forms. Surprisingly, the neurotoxicity of fibrils in PC12 cells was only marginally but not significantly stronger than monomers, contrary to previous reports. Altogether, our findings demonstrate the high pathogenicity of Aβ42 among the three Aβ species and support the idea that Aβ42 oligomers contribute to the pathological events leading to neurodegeneration in AD. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the ?4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins – drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.  相似文献   

8.
Lin KP  Chen SY  Lai LC  Huang YL  Chen JH  Chen TF  Sun Y  Wen LL  Yip PK  Chu YM  Chen WJ  Chen YC 《PloS one》2011,6(6):e20573

Background

Accumulated evidences have shown that vascular risk factors, e.g., hypertension, diabetes mellitus and hyperlipidemia, may be related to the risk of dementia. This study investigated the association between genetic polymorphisms of a vascular susceptibility gene, Ninjurin2 (NINJ2), and the risk of dementia, which has not been explored previously.

Methods

A total of 275 Alzheimer''s disease (AD) patients and 119 vascular dementia (VaD) patients aged 50 or older were recruited from three teaching hospitals from 2007 to 2010. Healthy controls (n = 423) with the same age of cases were recruited from the health checkup and volunteers worked at the hospital during the same time period. Five common (frequency >5%) haplotype-tagging single nucleotide polymorphisms (htSNPs) in NINJ2 were genotyped to test for the association between sequence variants of NINJ2 and dementia risk, and how vascular risk factors modify this association.

Results

Homozygosity of two NINJ2 SNPs was significantly associated with a decreased risk of AD [rs11833579: adjusted odds ratio (AOR) = 0.43; 95% confidence interval (CI)  = 0.23–0.80; rs12425791: AOR  = 0.33, 95% CI  = 0.12–0.96]. Five common haplotypes (cumulative frequency  = 97%) were identified. The global test for the association between NINJ2 haplotypes and AD was significant (p = 0.03). Haplotype CAGGA was significantly associated with a decreased risk of AD (AOR  = 0.32, 95% CI  = 0.11–0.94). No associations were observed for VaD.

Conclusion

Inherited polymorphisms of the vascular susceptibility gene NINJ2 were associated with AD risk.  相似文献   

9.
Chang  Yafei  Yuan  Qinghua  Jiang  Peipei  Sun  Ling  Ma  Yitong  Ma  Xiang 《Mammalian genome》2022,33(3):555-563

To investigate the association of myosin heavy chain protein 11 (MYH11) and transforming growth factor β signaling-related gene polymorphisms with the susceptibility of DeBakey type III aortic dissection (AD) and its clinical outcomes. Four single-nucleotide polymorphism (SNPs) (MYH11 rs115364997, rs117593370, TGFB1 rs1800469, and TGFBR1 rs1626340) were analyzed in patients with DeBakey III AD (173) and healthy participants (335). Gene–gene and gene–environment interactions were evaluated using generalized multifactor dimensionality reduction. The patients were followed up for a median of 55.7 months. MYH11 rs115364997 G or TGFBR1 rs1626340 A carriers had an increased risk of DeBakey type III AD. MYH11, TGFB1, TGFBR1, and environment interactions contributed to the risk of DeBakey type III AD (cross-validation consistency?=?10/10, P?=?0.001). Dominant models of MYH11 rs115364997 AG?+?GG genotype (HR?=?2.443; 95%CI: 1.096–5.445, P?=?0.029), TGFB1 rs1800469 AG?+?GG (HR?=?2.303; 95%CI: 1.069–4.96, P?=?0.033) were associated with an increased risk of mortality in DeBakey type III AD. The dominant model of TGFB1 rs1800469 AG?+?GG genotype was associated with an increased risk of recurrence of chest pain in DeBakey type III AD (HR?=?1.566; 95%CI: 1.018–2.378, P?=?0.041). In conclusions, G carriers of MYH11 rs115364997 or TGFB1 rs1800469 may be the poor prognostic indicators of mortality and recurrent chest pain in DeBakey type III AD. The interactions of gene–gene and gene–environment are associated with the risk of DeBakey type III AD.

  相似文献   

10.
《朊病毒》2013,7(1):73-80
The etiology of behavioral and psychological symptoms of dementia (BPSD) is complex, including putative biological, psychological, social and environmental factors. Recent years have witnessed accumulation of data on the association between genetic factors and behavioral abnormalities in Alzheimer disease (AD). In this research paper, our aim is to evaluate the association between the APOE, CYP46, PRNP and PRND genes and the profile of neuropsychiatric symptoms in Polish subjects with AD and mild cognitive impairment (MCI). We studied 99 patients with AD and 48 subjects with MCI. The presence and profile of BPSD were evaluated at baseline and prospectively with the Neuropsychiatric Inventory (NPI). Patients were dichotomized into those having ever experienced a particular symptom and those who did not over the whole disease period. Genotyping was performed using previously described standard protocols. The prevalence of comorbid behavioral symptoms and the overall level of behavioral burden were significantly greater in AD compared with the MCI group. In AD patients, carrier status of the T allele of the 3′UTR (untranslated region) PRND polymorphism was associated with an increased cumulative behavioral load and an elevated risk for delusions, anxiety, agitation/aggression, apathy and irritability/emotional ability. Among MCI subjects, APOE ε4 carriers demonstrated a reduced risk for nighttime behavior change. No other statistically significant genotype-phenotype correlations were observed, including the APOE, CYP46 and PRNP genes. A precise estimation of the exact significance of particular polymorphisms in BPSD etiology requires future studies on large populations.  相似文献   

11.
Proteolytical cleavage of the β‐amyloid precursor protein (APP) generates β‐amyloid, which is deposited in the brains of patients suffering from Alzheimer's disease (AD). Despite the well‐established key role of APP for AD pathogenesis, the physiological function of APP and its close homologues APLP1 and APLP2 remains poorly understood. Previously, we generated APP–/– mice that proved viable, whereas APP–/–APLP2–/– mice and triple knockouts died shortly after birth, likely due to deficits of neuromuscular synaptic transmission. Here, we generated conditional knockout alleles for both APP and APLP2 in which the promoter and exon1 were flanked by loxP sites. No differences in expression were detectable between wt and floxed alleles, whereas null alleles were obtained upon crossing with Cre‐transgenic deleter mice. These mice will now allow for tissue and time‐point controlled knockout of both genes. genesis 48:200–206, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Increasing evidence demonstrates that amyloid beta (Aβ) elicits mitochondrial dysfunction and oxidative stress, which contributes to the pathogenesis of Alzheimer's disease (AD). Identification of the molecules targeting Aβ is thus of particular significance in the treatment of AD. Hopeahainol A (HopA), a polyphenol with a novel skeleton obtained from Hopea hainanensis, is potentially acetylcholinesterase‐inhibitory and anti‐oxidative in H2O2‐treated PC12 cells. In this study, we reported that HopA might bind to Aβ1–42 directly and inhibit the Aβ1–42 aggregation using a combination of molecular dynamics simulation, binding assay, transmission electron microscopic analysis and staining technique. We also demonstrated that HopA decreased the interaction between Aβ1–42 and Aβ‐binding alcohol dehydrogenase, which in turn reduced mitochondrial dysfunction and oxidative stress in vivo and in vitro. In addition, HopA was able to rescue the long‐term potentiation induction by protecting synaptic function and attenuate memory deficits in APP/PS1 mice. Our data suggest that HopA might be a promising drug for therapeutic intervention in AD.  相似文献   

13.
Recent evidence has indicated that type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer’s disease (AD). Therefore, it is crucial to investigate the potential common processes that could explain this relation between AD and T2DM. In the recent decades, an abundance of evidence has emerged demonstrating that chronic inflammatory processes may be the major factors contributing to the development and progression of T2DM and AD. In this article, we have discussed the molecular underpinnings of inflammatory process that contribute to the pathogenesis of T2DM and AD and how they are linked to these two diseases. In depth understanding of the inflammatory mechanisms through which AD and T2DM are associated to each other may help the researchers to develop novel and more effective strategies to treat together AD and T2DM. Several treatment options have been identified which spurn the inflammatory processes and discourage the production of inflammatory mediators, thereby preventing or slowing down the onset of T2DM and AD.  相似文献   

14.
One of the fundamental questions regarding the pathogenesis of Alzheimer’s disease (AD) is how the monomeric, nontoxic amyloid β-protein (Aβ) is converted to its toxic assemblies in the brain. A unique Aβ species was identified previously in an AD brain, which is characterized by its binding to the GM1 ganglioside (GM1). On the basis of the molecular characteristics of this GM1-bound Aβ (GAβ), it was hypothesized that Aβ adopts an altered conformation through its binding to GM1, and GAβ acts as a seed for Aβ fibrillogenesis in an AD brain. To date, various in vitro and in vivo studies of GAβ have been performed, and their results support the hypothesis. Using a novel monoclonal antibody specific to GAβ, it was confirmed that GAβ is endogenously generated in the brain. Regarding the role of gangliosides in the facilitation of Aβ assembly, it has recently been reported that region-specific deposition of hereditary variant-type Aβs is determined by local gangliosides in the brain. Furthermore, it is likely that risk factors for AD, including aging and the expression of apolipoprotein E4, alter GM1 distribution on the neuronal surface, leading to GAβ generation.  相似文献   

15.
Multiple genetic and environmental factors regulate the susceptibility to Alzheimer’s disease (AD). Recently, several independent studies have reported that a locus on chromosome 14q32.1, where a gene encoding a cholesterol degrading enzyme of the brain, called 24-hydroxylase (CYP46A1) is located, has been linked with AD. The single nucleotide polymorphism (T/C) in intron 2 of CYP46 gene has been found to confer the risk for AD. The water soluble 24(S)-hydroxysterol is the product of the CYP46A1, and elevated plasma and cerebrospinal fluid hydroxysterol concentrations have been found in AD, reflecting increased brain cholesterol turnover or cellular degradation, due to the neurodegenerative process. A case–control study was performed on 125 AD and 102 age- and gender-matched control subjects (CNT) from Hungary, to test the association of CYP46 T/C and apolipoprotein E (ApoE) gene polymorphisms in AD. The frequency of the CYP46 C allele was similar (χ2=0.647, df=1, P=0.421, exact P=0.466, OR=0.845; 95% CI: 0.561–1.274) in both groups (CNT: 27%; 95% CI: 21.3–33.4; AD 30%; 95% CI: 25.0–36.3). The ApoE ɛ4 allele was significantly over-represented (χ2=11.029, df=2, P=0.004) in the AD population (23.2%; 95% CI: 18.2–29.0) when compared with the CNT (11.3%; 95% CI: 7.4–16.6). The presence or absence of one or two CYP46C alleles together with the ApoE ɛ4 allele did not increase the risk of AD (OR=3.492; 95% CI: 1.401–8.707; P<0.007 and OR=3.714; 95% CI: 1.549–8.908; P<0.003, respectively). Our results indicate that the intron 2 T/C polymorphism of CYP46 gene (neither alone, nor together with the ɛ4 allele) does not increase the susceptibility to late-onset sporadic AD in the Hungarian population.  相似文献   

16.
《朊病毒》2013,7(4):346-349
Mouse models of Alzheimer disease (AD) have been generated based on Amyloid-β Precursor Protein (AβPP) and the Presenilin (PSEN) gene mutations associated with familial AD (FAD). Such models have provided valuable insights into AD pathogenesis and represent an important research tool for the discovery of potential treatments. To model amyloid deposition in AD, we generated a new mouse line based on the presence of two copies of the genomic region encoding human wild-type AβPP as well as a mutation (L166P) in the murine Psen1. By ~6 months of age, these mice have begun to develop cerebral Aβ pathology with a significant increase in the levels of AβPP C-terminal fragments and Aβ42, as well as increase Aβ42/Aβ40 ratio. Since in the brain and other tissues of these mice, wild-type human AβPP mRNA and protein levels are comparable to those of endogenous AβPP, this model may allow studies about the role of AβPP isoforms in the pathogenesis of AD. This animal model may be suitable to test drugs aimed at inhibiting expression or altering splicing and processing of AβPP, without artifacts associated with the presence of mutations in AβPP or overexpression due to the use of exogenous promoters. These features of the new model are of critical importance in assessing the success of therapeutic interventions.  相似文献   

17.
Growing evidence suggests a strong association between cardiovascular risk factors and incidence of Alzheimer disease (AD). Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, has been identified as an independent cardiovascular risk factor and is also increased in plasma of patients with AD. However, whether ADMA is involved in the pathogenesis of AD is unknown. In this study, we found that ADMA content was increased in a transgenic Caenorhabditis elegans β-amyloid (Aβ) overexpression model, strain CL2006, and in human SH-SY5Y cells overexpressing the Swedish mutant form of human Aβ precursor protein (APPsw). Moreover, ADMA treatment exacerbated Aβ-induced paralysis and oxidative stress in CL2006 worms and further elevated oxidative stress and Aβ secretion in APPsw cells. Knockdown of type 1 protein arginine N-methyltransferase to reduce ADMA production failed to show a protective effect against Aβ toxicity, but resulted in more paralysis in CL2006 worms as well as increased oxidative stress and Aβ secretion in APPsw cells. However, overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) to promote ADMA degradation significantly attenuated oxidative stress and Aβ secretion in APPsw cells. Collectively, our data support the hypothesis that elevated ADMA contributes to the pathogenesis of AD. Our findings suggest that strategies to increase DDAH1 activity in neuronal cells may be a novel approach to attenuating AD development.  相似文献   

18.
19.
《Autophagy》2013,9(12):1842-1844
Alzheimer disease (AD) is sometimes referred to as type III diabetes because of the shared risk factors for the two disorders. Insulin resistance, one of the major components of type II diabetes mellitus (T2DM), is a known risk factor for AD. Insulin resistance increases amyloid-β peptide (Aβ) generation, but the exact mechanism underlying the linkage of insulin resistance to increased Aβ generation in the brain is unknown. In this study, we investigated the effect of insulin resistance on amyloid β (A4) precursor protein (APP) processing in mice fed a high-fat diet (HFD), and diabetic db/db mice. We found that insulin resistance promotes Aβ generation in the brain via altered insulin signal transduction, increased BACE1/β-secretase and γ-secretase activities, and accumulation of autophagosomes. Using an in vitro model of insulin resistance, we found that defects in insulin signal transduction affect autophagic flux by inhibiting the mechanistic target of rapamycin (MTOR) pathway. The insulin resistance-induced autophagosome accumulation resulted in alteration of APP processing through enrichment of secretase proteins in autophagosomes. We speculate that the insulin resistance that underlies the pathogenesis of T2DM might alter APP processing through autophagy activation, which might be involved in the pathogenesis of AD. Therefore, we propose that insulin resistance-induced autophagosome accumulation becomes a potential linker between AD and T2DM.  相似文献   

20.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号