首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Using immunoelectron microscopy, CENP-E is shown to be an integral component of the kinetochore corona fibers that tether centromeres to the spindle. Immediately upon nuclear envelope fragmentation, an associated plus end motor trafficks cytoplasmic CENP-E toward chromosomes along astral microtubules that enter the nuclear volume. Before or concurrently with initial lateral attachment of spindle microtubules, CENP-E targets to the outermost region of the developing kinetochores. After stable attachment, throughout chromosome congression, at metaphase, and throughout anaphase A, CENP-E is a constituent of the corona fibers, extending at least 50 nm away from the kinetochore outer plate and intertwining with spindle microtubules. In congressing chromosomes, CENP-E is preferentially associated with (or accessible at) the stretched, leading kinetochore known to provide the primary power for chromosome movement. Taken together, this evidence strongly supports a model in which CENP-E functions in congression to tether kinetochores to the disassembling microtubule plus ends.  相似文献   

2.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

3.
The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells   总被引:1,自引:0,他引:1  
Conly L. Rieder 《Chromosoma》1981,84(1):145-158
When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 m) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.  相似文献   

4.
The dynamic behavior of kinetochore fiber microtubules has been examined in PtK1 cells during anaphase of mitosis. Cells in anaphase were injected with biotin-tubulin and, at various intervals after injection, fixed for light or electron microscopic immunolocalization of biotin-tubulin-containing microtubules. When cells in early to mid anaphase were injected with biotin-tubulin and fixed 1-2 min later, fluorescence was observed throughout the spindle, including the region of the kinetochore fibers. Electron microscopy of early to mid anaphase cells, after processing with immunogold methods, revealed both labeled and unlabeled microtubules in the kinetochore fibers; some labeled microtubules contacted the kinetochores. When late anaphase cells were injected with biotin-tubulin, and fixed a few minutes later, little fluorescence was observed in the kinetochore fibers. Electron microscopy confirmed that kinetochore fibers in late anaphase cells were refractory to tubulin incorporation. The results of these experiments demonstrate that the kinetochore fiber incorporates new microtubules during early anaphase but that this incorporation ceases in mid to late anaphase. Thus, microtubule turnover within the kinetochore fiber does not abruptly cease at the onset of anaphase and anaphase kinetochore fiber microtubules are more dynamic than previously suspected.  相似文献   

5.
We describe preliminary results from two studies exploring the dynamics of microtubule assembly and organization within chromosomal spindle fibers. In the first study, we microinjected fluorescently labeled tubulin into mitotic PtK1 cells and measured fluorescence redistribution after photobleaching (FRAP) to determine the assembly dynamics of the microtubules within the chromosomal fibers in metaphase cells depleted of nonkinetochore microtubules by cooling to 23-24 degrees C. FRAP measurements showed that the tubulin throughout at least 72% of the microtubules within the chromosomal fibers exchanges with the cellular tubulin pool with a half-time of 77 sec. There was no observable poleward flux of subunits. If the assembly of the kinetochore microtubules is governed by dynamic instability, our results indicate that the half-life of microtubule attachment to the kinetochore is less than several min at 23-24 degrees C. In the second study, we used high-resolution polarization microscopy to observe microtubule dynamics during mitosis in newt lung epithelial cells. We obtained evidence from 150-nm-thick optical sections that microtubules throughout the spindle laterally associate for several sec into "rods" composed of a few microtubules. These transient lateral associations between microtubules appeared to produce the clustering of nonkinetochore and kinetochore microtubules into the chromosomal fibers. Our results indicate that the chromosomal fiber is a dynamic structure, because microtubule assembly is transient, lateral interactions between microtubules are transient, and the attachment of the kinetochores to microtubules may also be transient.  相似文献   

6.
Membrane distribution in dividing endosperm cells of Haemanthus   总被引:3,自引:2,他引:1       下载免费PDF全文
Membranes in cell-wall-free dividing endosperm cells of Haemanthus were examined after postfixation with osmium tetroxide-potassium ferrocyanide. We found that preservation and staining of membranes in metaphase cells was highly variable. Even adjacent cells often showed different degrees of preservation of membrane. However, this method does reveal a much more extensive membrane system in the mitotic spindle of Haemanthus than has been revealed previously using glutaraldehyde-osmium fixation. At prometaphase a system of membranes becomes associated with the kinetochore bundles. By metaphase, membranes constitute a prominent feature of kinetochore bundles, terminating near the kinetichores. Minipoles, identified by converging microtubules and associated membranes, are distributed in a zone extending laterally across the polar regions of the cell. The microtubules appear to terminate at the minipoles, whereas the membrane system becomes oriented generally perpendicular to the spindle axis and interfaces distally with a region of amorphous electron-dense material, helical polyribosomes, and cell organelles. The role of this extensive membrane system, if any, in chromosome movement is unknown. However, its distribution is coincident with the distribution of calcium-rich membranes and kinetochore fibers at metaphase in these cells (Wolniak, S. M., P. K. Hepler, and W. T. Jackson, 1981, Eur. J. Cell Biol., 25:171-174). Thus, these membranes may function in creating calcium domains that, in turn, may play a regulatory role in chromosome movement.  相似文献   

7.
Summary Immunofluorescence studies on microtubule arrangement during the transition from prophase to metaphase in onion root cells are presented. The prophase spindle observed at late preprophase and prophase is composed of microtubules converged at two poles near the nuclear envelope; thin bundles of microtubules are tracable along the nuclear envelope. Prior to nuclear envelope breakdown diffuse tubulin staining occurs within the prophase nuclei. During nuclear envelope breakdown the prophase spindle is no longer identifiable and prominent tubulin staining occurs among the prometaphase chromosomes. Patches of condensed tubulin staining are observed in the vicinity of kinetochores. At advanced prometaphase kinetochore bundles of microtubules are present in some kinetochore regions. At metaphase the mitotic spindle is mainly composed of kinetochore bundles of microtubules; pole-to-pole bundles are scarce. Our observations suggest that the prophase spindle is decomposed at the time of nuclear envelope breakdown and that the metaphase spindle is assembled at prometaphase, with the help of kinetochore nucleating action.  相似文献   

8.
Sites of microtubule assembly and disassembly in the mitotic spindle   总被引:82,自引:0,他引:82  
T Mitchison  L Evans  E Schulze  M Kirschner 《Cell》1986,45(4):515-527
We have microinjected biotinylated tubulin into mitotic fibroblast cells to identify the sites in the spindle at which new subunits are incorporated into microtubules (MTs). Labeled subunits were visualized in the electron microscope using an antibody to biotin followed by a secondary antibody coupled to colloidal gold. Astral MTs incorporate labeled subunits very rapidly by elongation of existing MTs and by new nucleation from the centrosome. At a slower rate, kinetochore MTs incorporate subunits at the kinetochore progressively during metaphase, suggesting a slow poleward flux of subunits in the kinetochore fiber. When cells injected in metaphase were examined in anaphase, a significant fraction of kinetochore MTs was unlabeled, suggesting that depolymerization had occurred at the kinetochore concomitant with chromosome to pole movement. The existence of opposite fluxes at the kinetochore during metaphase and anaphase suggests that two separate forces are responsible for chromosome congression and anaphase movement.  相似文献   

9.
To test the "traction fiber" model for metaphase positioning of bivalents during meiosis, kinetochore fibers of maloriented bivalents, induced during recovery from cold arrest, were analyzed with a liquid crystal polarizing microscope. The measured birefringence retardation of kinetochore fibers is proportional to the number of microtubules in a fiber. Five of the 11 maloriented bivalents analyzed exhibited bipolar malorientations that had at least four times more kinetochore microtubules to one pole than to the other pole, and two had microtubules directed to only one pole. Yet all maloriented bivalents had positions at or near the spindle equator. The traction fiber model predicts such maloriented bivalents should be positioned closer to the pole with more kinetochore microtubules. A metaphase position at the spindle equator, according to the model, requires equal numbers of kinetochore microtubules to both poles. Data from polarizing microscope images were not in accord with those predictions, leading to the conclusion that other factors, in addition to traction forces, must be involved in metaphase positioning in crane-fly spermatocytes. Although the identity of additional factors has not been established, one possibility is that polar ejection forces operate to exert away-from-the-pole forces that could counteract pole-directed traction forces. Another is that kinetochores are "smart," meaning they embody a position-sensitive mechanism that controls their activity.  相似文献   

10.
Treatment of PtK1 cells during metaphase with solutions containing hyperosmotic concentrations of sucrose resulted in an alteration of kinetochore structure and function in a concentration-dependent manner. This alteration in kinetochore morphology was shown to be rapidly reversible upon removal of the sucrose-containing tissue culture medium. A 10-min treatment with both 0.2 M and 0.4 M sucrose resulted in a concentration-dependent aggregation of spindle fibers into bundles, loss of trilaminar kinetochore morphology as judged by electron microscopy, and induction of anaphase B-like spindle elongation as previously described. Electron microscopy showed that a 10-min treatment of metaphase cells with hyperosmotic concentrations of sucrose changed the trilaminar kinetochore structure to one of a single lamina, with an amorphous, lightly staining material distally associated with it. Sucrose-induced bundles of microtubules could usually be seen embedded or tangentially associated with this material. Rate and extent of spindle elongation in sucrose-treated metaphase cells were greater in the higher concentrations of sucrose employed. The degree of microtubule bundling was also concentration dependent, with reduced bundling occurring at lower sucrose concentrations. Within 2 min after sucrose removal kinetochores returned to a bi- or trilaminar morphology with reduction in the amount of amorphous material. Reformation of the kinetochore trilaminar structure resembled that of the normal maturation process which occurs from prophase through anaphase. These rapid changes in kinetochore morphology following release from sucrose treatment were temporally associated with restoration of spindle function and suggested that kinetochore integrity was necessary for the expression of spindle forces responsible for spindle shortening. These forces are probably generated or transduced by the continuum formed between the two spindle poles, the kinetochore microtubules, and the sister chromatids.  相似文献   

11.
Cytoplasmic dynein is the only known kinetochore protein capable of driving chromosome movement toward spindle poles. In grasshopper spermatocytes, dynein immunofluorescence staining is bright at prometaphase kinetochores and dimmer at metaphase kinetochores. We have determined that these differences in staining intensity reflect differences in amounts of dynein associated with the kinetochore. Metaphase kinetochores regain bright dynein staining if they are detached from spindle microtubules by micromanipulation and kept detached for 10 min. We show that this increase in dynein staining is not caused by the retraction or unmasking of dynein upon detachment. Thus, dynein genuinely is a transient component of spermatocyte kinetochores.We further show that microtubule attachment, not tension, regulates dynein localization at kinetochores. Dynein binding is extremely sensitive to the presence of microtubules: fewer than half the normal number of kinetochore microtubules leads to the loss of most kinetochoric dynein. As a result, the bulk of the dynein leaves the kinetochore very early in mitosis, soon after the kinetochores begin to attach to microtubules. The possible functions of this dynein fraction are therefore limited to the initial attachment and movement of chromosomes and/or to a role in the mitotic checkpoint.  相似文献   

12.
Microtubules in the mitotic spindles of newt lung cells were marked using local photoactivation of fluorescence. The movement of marked segments on kinetochore fibers was tracked by digital fluorescence microscopy in metaphase and anaphase and compared to the rate of chromosome movement. In metaphase, kinetochore oscillations toward and away from the poles were coupled to kinetochore fiber shortening and growth. Marked zones on the kinetochore microtubules, meanwhile, moved slowly polewards at a rate of approximately 0.5 micron/min, which identifies a slow polewards movement, or "flux," of kinetochore microtubules accompanied by depolymerization at the pole, as previously found in PtK2 cells (Mitchison, 1989b). Marks were never seen moving away from the pole, indicating that growth of the kinetochore microtubules occurs only at their kinetochore ends. In anaphase, marked zones on kinetochore microtubules also moved polewards, though at a rate slower than overall kinetochore-to-pole movement. Early in anaphase-A, microtubule depolymerization at kinetochores accounted on average for 75% of the rate of chromosome-to-pole movement, and depolymerization at the pole accounted for 25%. When chromosome-to-pole movement slowed in late anaphase, the contribution of depolymerization at the kinetochores lessened, and flux became the dominant component in some cells. Over the whole course of anaphase-A, depolymerization at kinetochores accounted on average for 63% of kinetochore fiber shortening, and flux for 37%. In some anaphase cells up to 45% of shortening resulted from the action of flux. We conclude that kinetochore microtubules change length predominantly through polymerization and depolymerization at the kinetochores during both metaphase and anaphase as the kinetochores move away from and towards the poles. Depolymerization, though not polymerization, also occurs at the pole during metaphase and anaphase, so that flux contributes to polewards chromosome movements throughout mitosis. Poleward force production for chromosome movements is thus likely to be generated by at least two distinct molecular mechanisms.  相似文献   

13.
Chromosome congression is essential for faithful chromosome segregation and genomic stability in cell division. Centromere‐associated protein E (CENP‐E), a plus‐end‐directed kinesin motor, is required for congression of pole‐proximal chromosomes in metaphase. CENP‐E accumulates at the outer plate of kinetochores and mediates the kinetochore‐microtubule capture. CENP‐E also transports the chromosomes along spindle microtubules towards the equatorial plate. CENP‐E interacts with Bub1‐related kinase, Aurora B and core kinetochore components during kinetochore–microtubule attachment. In this review, we introduce the structures and mechanochemistry of kinesin‐7 CENP‐E. We highlight the complicated interactions between CENP‐E and partner proteins during chromosome congression. We summarise the detailed roles and mechanisms of CENP‐E in mitosis and meiosis, including the kinetochore–microtubule capture, chromosome congression/alignment in metaphase and the regulation of spindle assembly checkpoint. We also shed a light on the roles of CENP‐E in tumourigenesis and CENP‐E's specific inhibitors.  相似文献   

14.
In previous work we injected mitotic cells with fluorescent tubulin and photobleached them to mark domains on the spindle microtubules. We concluded that chromosomes move poleward along kinetochore fiber microtubules that remain stationary with respect to the pole while depolymerizing at the kinetochore. In those experiments, bleached zones in anaphase spindles showed some recovery of fluorescence with time. We wished to determine the nature of this recovery. Was it due to turnover of kinetochore fiber microtubules or of nonkinetochore microtubules or both? We also wished to investigate the question of turnover of kinetochore microtubules in metaphase. We microinjected cells with x- rhodamine tubulin (x-rh tubulin) and photobleached spindles in anaphase and metaphase. At various times after photobleaching, cells were detergent lysed in a cold buffer containing 80 microM calcium, conditions that led to the disassembly of almost all nonkinetochore microtubules. Quantitative analysis with a charge coupled device image sensor revealed that the bleached zones in anaphase cells showed no fluorescence recovery, suggesting that these kinetochore fiber microtubules do not turn over. Thus, the partial fluorescence recovery seen in our earlier anaphase experiments was likely due to turnover of nonkinetochore microtubules. In contrast fluorescence in metaphase cells recovered to approximately 70% the control level within 7 min suggesting that many, but perhaps not all, kinetochore fiber microtubules of metaphase cells do turn over. Analysis of the movements of metaphase bleached zones suggested that a slow poleward translocation of kinetochore microtubules occurred. However, within the variation of the data (0.12 +/- 0.24 micron/min), it could not be determined whether the apparent movement was real or artifactual.  相似文献   

15.
Multiple asters (MAST)/Orbit is a member of a new family of nonmotor microtubule-associated proteins that has been previously shown to be required for the organization of the mitotic spindle. Here we provide evidence that MAST/Orbit is required for functional kinetochore attachment, chromosome congression, and the maintenance of spindle bipolarity. In vivo analysis of Drosophila mast mutant embryos undergoing early mitotic divisions revealed that chromosomes are unable to reach a stable metaphase alignment and that bipolar spindles collapse as centrosomes move progressively closer toward the cell center and eventually organize into a monopolar configuration. Similarly, soon after depletion of MAST/Orbit in Drosophila S2 cells by double-stranded RNA interference, cells are unable to form a metaphase plate and instead assemble monopolar spindles with chromosomes localized close to the center of the aster. In these cells, kinetochores either fail to achieve end-on attachment or are associated with short microtubules. Remarkably, when microtubule dynamics is suppressed in MAST-depleted cells, chromosomes localize at the periphery of the monopolar aster associated with the plus ends of well-defined microtubule bundles. Furthermore, in these cells, dynein and ZW10 accumulate at kinetochores and fail to transfer to microtubules. However, loss of MAST/Orbit does not affect the kinetochore localization of D-CLIP-190. Together, these results strongly support the conclusion that MAST/Orbit is required for microtubules to form functional attachments to kinetochores and to maintain spindle bipolarity.  相似文献   

16.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

17.
During the formation of the metaphase spindle in animal somatic cells, kinetochore microtubule bundles (K fibers) are often disconnected from centrosomes, because they are released from centrosomes or directly generated from chromosomes. To create the tightly focused, diamond-shaped appearance of the bipolar spindle, K fibers need to be interconnected with centrosomal microtubules (C-MTs) by minus end-directed motor proteins. Here, we have characterized the roles of two minus end-directed motors, dynein and Ncd, in such processes in Drosophila S2 cells using RNA interference and high resolution microscopy. Even though these two motors have overlapping functions, we show that Ncd is primarily responsible for focusing K fibers, whereas dynein has a dominant function in transporting K fibers to the centrosomes. We also report a novel localization of Ncd to the growing tips of C-MTs, which we show is mediated by the plus end-tracking protein, EB1. Computer modeling of the K fiber focusing process suggests that the plus end localization of Ncd could facilitate the capture and transport of K fibers along C-MTs. From these results and simulations, we propose a model on how two minus end-directed motors cooperate to ensure spindle pole coalescence during mitosis.  相似文献   

18.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

19.
In rapidly growing hyphae of Saprolegnia ferax, all nuclei contain arrays of kinetochore microtubules, which suggests that the nuclei are all in various phases of mitosis, with no apparent interphase. In prophase nuclei, kinetochore microtubules form a single, hemispherical array adjacent to the centrioles. This array separates into two similar arrays after centriole replication. The two arrays form by separation of the initial group of microtubules, with no kinetochore replication. During metaphase, between 6.5 and 85% of the kinetochores occur as amphitelic pairs, with a slight tendency for pairing to increase as the spindle elongates. 100% pairing has never been observed. The interkinetochore distance in these pairs is consistently similar to or approximately 0.17 microns. Throughout metaphase and early anaphase, there is extensive and increasing diversity in kinetochore microtubule length, so that a true metaphase plate has not been found. During metaphase, anaphase, and telophase, kinetochore numbers vary considerably, with a mean of similar to or approximately 30 per half spindle. A number of artefactual causes for this variability were examined and discarded. Thus, these results are accepted as real, suggesting either variable ploidy levels in the coenocytic hyphae or kinetochore replication during mitosis.  相似文献   

20.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号