首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling are the key regulators for germ cell and meiosis induction, respectively. Gonadal tissue also provides an appropriate microenvironment for oocyte differentiation in vivo. The current study aimed to determine whether mimicking in vivo niche is more efficient for oocyte differentiation from embryonic stem (ES) cells. Here, differentiation of mouse ES cells toward oocyte‐like cells using embryoid body (EB) and monolayer protocols was induced in the presence (+BMP4) or absence (‐BMP4) of BMP4. On day 5, each group was co‐cultured with ovarian somatic cells in the presence or absence of RA (+RA or –RA) for an additional 14 days. Our results showed a significant increase in expression of meiotic markers in the +BMP4 condition in EB differentiation protocol. Further differentiation with ovarian somatic cells led to a subpopulation of oocyte‐like cell formation. Compared to the controls, the +RA condition resulted in a significant elevation of the meiotic gene expression in contrast to Oct4 that significantly decreased in both protocols. In the cells pre‐treated with BMP4 and then exposed to RA in the monolayer differentiation protocol, the gene expression levels of germ cell, Mvh, and maturation markers, Cx37, Zp2, and Gdf9, were also upregulated significantly. Therefore, it can be concluded that +BMP4 and +RA along with ovarian somatic cell co‐culture improved the rate of in vitro oocyte differentiation.  相似文献   

2.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

3.
In the embryonic gonads of mice, the genetic and epigenetic regulatory programs for germ cell sex specification and meiosis induction or suppression are intertwined. The quest for garnering comprehensive understanding of these programs has led to the emergence of retinoic acid (RA) as an important extrinsic factor, which regulates initiation of meiosis in female fetal germ cells that have attained a permissive epigenetic ground state. In contrast, germ cells in fetal testis are protected from the exposure to RA due to the activity of CYP26B1, an RA metabolizing enzyme, which is highly expressed in fetal testis. In this review, we provide an overview of the molecular mechanisms operating in fetal gonads of mice, which enable regulation of meiosis via RA signaling.  相似文献   

4.
5.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.  相似文献   

6.
7.
维甲酸(RA)在胚胎期生殖细胞启动减数分裂过程中发挥重要的调控作用,但RA与性腺细胞的作用机制及其能否诱导生殖细胞完成整个减数分裂生成配子的问题尚不清楚.本文以鸡原始生殖细胞体外无饲养层培养体系为模型,避开性腺体细胞的影响,研究RA诱导PGC进入减数分裂的作用机理.研究发现,在无体细胞的情况下,RA显著上调鸡胚PGC中STRA8,SYCP3和DMC1的mRNA和蛋白表达水平,从而促进其进入减数分裂;同时,流式细胞分析和吉姆萨染色结果表明,RA能使鸡胚PGC经历各个减数分裂时期,最终生成36.5%~58.4%单倍体生殖细胞;此外,本实验还对雌性和雄性PGC对RA的应答能力进行了研究,发现两者对RA的敏感程度相似.综上所述,RA能直接诱导PGC启动并完成整个减数分裂过程,生成单倍体生殖细胞,无需体细胞或其他因子的介导.这为临床上治疗不孕不育及配子形成的机理研究提供了基础.  相似文献   

8.
9.
atRA (all-trans-retinoic acid) is known to induce the differentiation of mESCs (mouse embryonic stem cells) into PGCs (primordial germ cells) in vitro. However, it is not clear as to what changes occur in PGC differentiation-associated genes or what mechanisms are involved when EBs (embryoid bodies) derived from mESCs are induced by atRA. EBs derived from mESCs were treated with 1, 2 or 5 μM atRA for 16 h, 2 days or 5 days. Real-time PCR and Western blot analysis were performed to detect the relative levels of PGC differentiation-associated genes (Lin28, Blimp1, Stra8 and Mvh) and the corresponding proteins respectively. Immunofluorescence was used to detect the protein location and distribution in EBs. The expression characteristics of genes could be divided into three categories: rapidly reached the peak value in 16 h and then decreased (Stra8, Lin28), initially low and then increased to reach the peak value in 5 days (Mvh) and relatively unchanged (Blimp1). A low level of Lin28 was expressed in EBs treated with atRA for 2 days or 5 days. The variation in the level of Lin28 mRNA did not influence the change in the level of Blimp1 mRNA. The changes in Stra8/Lin28 were consistent with the corresponding changes in the levels of their respective mRNAs, but the changes for Mvh/Blimp1 were not consistent with the corresponding changes in the levels of their respective mRNAs. Blimp1 expression may be independent of the effect of atRA on PGC differentiation. atRA may promote the start of a period in which there is a low level of Lin28 expression during PGC differentiation.  相似文献   

10.
11.
Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome‐wide screening of RA‐responsive genes by in silico analysis of RA‐response elements, and identified 26 RA‐responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all‐trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP‐mediated HSC activation was suppressed by antioxidant N‐acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.  相似文献   

12.
Bone morphogenetic proteins (BMPs) - expressed in the developing retina - are known to be involved in the regulation of cell proliferation and apoptosis in several tumor entities. The objective of this study was to determine the role of the BMP4 pathway in retinoblastoma cells, which are absent in a functional retinoblastoma (RB1) gene. BMP receptors were detected in all retinoblastoma cell lines investigated. A correct transmission of BMP signaling via the Smad1/5/8 pathway could be demonstrated in WERI-Rb1 retinoblastoma cells and application of recombinant human BMP4 resulted in an increase in apoptosis, which to a large extend is caspase independent. Cell proliferation was not affected by BMP4 signaling, although the pRb-related proteins p107 and p130, contributing to the regulation of the same genes, are still expressed. WERI-Rb1 cells exhibit elevated endogenous levels of p21(CIP1) and p53, but we did not detect any increase in p53, p21(CIP1)or p27(KIP1) expression levels. Id proteins became, however, strongly up-regulated upon exogenous BMP4 treatment. Thus, RB1 loss in WERI-Rb1 cells is obviously not compensated for by pRb-independent (e.g. p53-dependent) cell cycle control mechanisms, preventing an anti-proliferative response to BMP4, which normally induces cell cycle arrest.  相似文献   

13.
14.
15.
Bone morphogenetic protein signaling in limb outgrowth and patterning   总被引:3,自引:1,他引:3  
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor beta (TGFbeta) multigene family. Current evidence indicates that they may play different and even antagonistic roles at different stages of limb development. Refined studies of their function in these processes have been impeded in the mouse due to the early lethality of null mutants for several BMP ligands and their receptors. Recently, however, these questions have benefited from the very powerful Cre-loxP technology. In this review, I intend to summarize what has been learned from this conditional mutagenesis approach in the mouse limb, focusing on Bmp2, Bmp4 and Bmp7 while restricting my analysis to the initial phases of limb formation and patterning. Two major aspects are discussed, the role of BMPs in dorsal-ventral polarization of the limb bud, together with their relation to apical ectodermal ridge (AER) induction, and their role in controlling digit number and identity. Particular attention is paid to the methodology, its power and its limits.  相似文献   

16.
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly‐derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all‐trans retinoic acid, testosterone and testicular‐cell‐conditioned medium prepared from newborn male mouse testes. HUMSCs formed “tadpole‐like” cells after induction with different reagents and showed both mRNA and protein expression of germ‐cell‐specific markers Oct4 (POUF5), Ckit, CD49f (α6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage. J. Cell. Biochem. 109: 747–754, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All‐trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA‐mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA‐sensitive SCC‐25 cells compared to atRA‐resistant SCC‐9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC‐25 cells but not in SCC‐9 cells. Gene expression levels were confirmed for seven of these genes by RT‐qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC‐25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA‐dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on day 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437–1444, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Prion protein (PrPC), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrPC in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline‐regulated lentiviral vectors that up‐regulate or suppresses PrPC expression. Here, we show that expression of PrPC in pluripotent hESCs cultured under self‐renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrPC in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over‐expression of PrPC in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrPC is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self‐renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrPC is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self‐renewal state, control cell proliferation activity, and define stem cell fate.  相似文献   

19.
Bone morphogenetic proteins (BMPs) are a family of growth differentiation factors which induce bone formation from mesenchymal cells. These proteins are members of the transforming growth factor‐β superfamily. The expression of BMPs in the nervous system as well as in other tissues has been reported. In this study, we show that the presence of BMP‐2 resulted in a dose‐dependent increase in the number of tyrosine hydroxylase‐immunoreactive ventral mesencephalic cells after 7 days in serum‐free medium cultures. A maximal response was elicited at 10 ng/mL. BMP‐2 also increased the number of primary neurites and branch points as well as the length of the longest neurite in a dose‐dependent manner, with a maximal effect at 1 ng/mL. In contrast, BMP‐2 did not modify the number or the function of GABAergic neurons. On the other hand, we observed stimulation of proliferation and morphological changes in glial cells (astrocytes become more fibrous shaped) in the presence of a high BMP‐2 concentration (100 ng/mL), but not with lower doses, suggesting that the neurotrophic effect in dopaminergic neurons is not mediated by astroglial cells. This is consistent with the fact that the BMP‐2 effect on dopaminergic neurons was observed even when the cultures were treated with α‐aminoadipic acid to exclude the presence of glial cells. In summary, our data indicate that BMP‐2 is a potent neurotrophic factor for ventral mesencephalic dopaminergic cells in culture. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 161–170, 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号