首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

2.
3.
4.
Nucleosomes are dynamic entities with wide‐ranging compositional variations. Human histone variants H2A.B and H2A.Z.2.2 play critical roles in multiple biological processes by forming unstable nucleosomes and open chromatin structures, but how H2A.B and H2A.Z.2.2 confer these dynamic features to nucleosomes remains unclear. Here, we report cryo‐EM structures of nucleosome core particles containing human H2A.B (H2A.B‐NCP) at atomic resolution, identifying large‐scale structural rearrangements in the histone octamer in H2A.B‐NCP. H2A.B‐NCP compacts approximately 103 bp of DNA wrapping around the core histones in approximately 1.2 left‐handed superhelical turns, in sharp contrast to canonical nucleosome encompassing approximately 1.7 turns of DNA. Micrococcal nuclease digestion assay reveals that nineteen H2A.B‐specific residues, including a ROF (“regulating‐octamer‐folding”) sequence of six consecutive residues, are responsible for loosening of H2A.B‐NCPs. Unlike H2A.B‐NCP, the H2A.Z.2.2‐containing nucleosome (Z.2.2‐NCP) adopts a less‐extended structure and compacts around 125 bp of DNA. Further investigation uncovers a crucial role for the H2A.Z.2.2‐specific ROF in both H2A.Z.2.2‐NCP opening and SWR1‐dependent histone replacement. Taken together, these first high‐resolution structure of unstable nucleosomes induced by histone H2A variants elucidate specific functions of H2A.B and H2A.Z.2.2 in enhancing chromatin dynamics.  相似文献   

5.
6.
7.
8.
9.
10.
真核生物染色质的基本结构组成单元是核小体,基因组DNA被压缩在染色质中,核小体的存在通常会抑制转录、复制、修复和重组等发生在DNA模板上的生物学过程。组蛋白变体H2A.Z可以调控染色质结构进而影响基因的转录过程,但其详细的调控机制仍未研究清楚。为了比较含有组蛋白变体H2A.Z的核小体和常规核小体在盐离子作用下的稳定性差异,本文采用Förster共振能量转移的方法检测氯化钠、氯化钾、氯化锰、氯化钙、氯化镁等离子对核小体的解聚影响。实验对Widom 601 DNA序列进行双荧光Cy3和Cy5标记,通过荧光信号值的变化来反映核小体的解聚变化。Förster共振能量转移检测结果显示:在氯化钠、氯化钾、氯化锰、氯化钙和氯化镁作用下,含有组蛋白变体H2A.Z的核小体解聚速度相比于常规核小体要慢,且氯化钙、氯化锰和氯化镁的影响更明显。电泳分析结果表明,在75℃条件下含有组蛋白变体H2A.Z的核小体的解聚速率明显低于常规核小体。采用荧光热漂移检测(fluorescence thermal shift analysis , FTS)进一步分析含有组蛋白变体H2A.Z核小体的稳定性,发现两类核小体的荧光信号均呈现2个明显的增长期,含有组蛋白变体H2A.Z核小体的第1个荧光信号增速期所对应的温度明显高于常规核小体,表明核小体中H2A.Z/H2B二聚体的解聚变性温度要高于常规的H2A/H2B二聚体,含有组蛋白变体H2A.Z核小体的热稳定性高。研究结果均表明,含有组蛋白变体H2A.Z的核小体的结构比常规核小体的结构稳定。  相似文献   

11.
Nap1 is a histone chaperone involved in the nuclear import of H2A–H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A–H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1‐mediated H2A–H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A–H2B heterodimer. Oligomerization of the Nap1–H2A–H2B complex results in burial of surfaces required for deposition of H2A–H2B into nucleosomes. Chromatin immunoprecipitation‐exonuclease (ChIP‐exo) analysis shows that Nap1 is required for H2A–H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1‐mediated H2A–H2B deposition and nucleosome assembly.  相似文献   

12.
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU‐ and EdU‐incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and “click” chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re‐estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.  相似文献   

13.
14.
15.
16.
17.
Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland‐dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro‐ and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.  相似文献   

18.
19.
20.
Despite progress in diagnostics and treatment for preeclampsia, it remains the foremost cause of maternal and foetal perinatal morbidity and mortality worldwide. Over recent years, various lines of evidence have emphasized long non‐coding RNAs (lncRNAs) which function as an innovative regulator of biological behaviour, as exemplified by proliferation, apoptosis and metastasis. However, the role of lncRNAs has not been well described in preeclampsia. Here, we identified a lncRNA, PVT1, whose expression was down‐regulated in qRT‐PCR analyses in severe preeclampsia. The effects of PVT1 on development were studied after suppression and overexpression of PVT1 in HTR‐8/SVneo and JEG3 cells. PVT1 knockdown notably inhibited cell proliferation and stimulated cell cycle accumulation and apoptosis. Exogenous PVT1 significantly increased cell proliferation. Based on analysis of RNAseq data, we found that PVT1 could affect the expression of numerous genes, and then investigated the function and regulatory mechanism of PVT1 in trophoblast cells. Further mechanistic analyses implied that the action of PVT1 is moderately attributable to its repression of ANGPTL4 via association with the epigenetic repressor Ezh2. Altogether, our study suggests that PVT1 could play an essential role in preeclampsia progression and probably acts as a latent therapeutic marker; thus, it might be a useful prognostic marker when evaluating new therapies for patients with preeclampsia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号