首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise.  相似文献   

3.
Leukocyte rolling adhesion, facilitated by selectin-mediated interactions, is a highly dynamic process in which cells roll along the endothelial surface of blood vessel walls to reach the site of infection. The most common approach to investigate cell-substrate adhesion is to analyze the cell rolling velocity in response to shear stress changes. It is assumed that changes in rolling velocity indicate changes in adhesion strength. In general, cell rolling velocity is studied at the population level as an average velocity corresponding to given shear stress. However, no statistical investigation has been performed on the instantaneous velocity distribution. In this study, we first developed a method to remove systematic noise and revealed the true velocity distribution to exhibit a log-normal profile. We then demonstrated that the log-normal distribution describes the instantaneous velocity at both the population and single-cell levels across the physiological flow rates. The log-normal parameters capture the cell motion more accurately than the mean and median velocities, which are prone to systematic error. Lastly, we connected the velocity distribution to the molecular adhesion force distribution and showed that the slip-bond regime of the catch-slip behavior of the P-selectin/PSGL-1 interaction is responsible for the variation of cell velocity.  相似文献   

4.
With the goal of achieving an intelligent robot camera system that can take dynamic images automatically through humanlike, natural camera work, we analyzed how images were shot, subjectively evaluated reproduced images, and examined effects of camerawork, using camera control technique as a parameter. It was found that (1) A high evaluation is obtained when human-based data are used for the position adjusting velocity curve of the target; (2) Evaluation scores are relatively high for images taken with feedback-feedforward camera control method for target movement in one direction; (3) Keeping the target within the image area using the control method that imitates human camera handling becomes increasingly difficult when the target changes both direction and velocity and becomes bigger and faster, and (4) The mechanical feedback method can cope with rapid changes in the target's direction and velocity, constantly keeping the target within the image area, though the viewer finds the image rather mechanical as opposed to humanlike.  相似文献   

5.
The principal advantage of the n.m.r. imaging method lies in the specific contrasts which are available. In this work we describe the use of velocity and diffusion contrast methods in biophysical applications and at microscopic spatial resolution. In the first example, involving water-protein interactions, the relationship between water self-diffusion and water concentration, as measured using pulsed gradient spin echo n.m.r., is shown. It is demonstrated that this relationship can be used to provide a water concentration image. The result is compared with the conventional proton density and transverse relaxation maps. The next example concerns the use of dynamic n.m.r. microscopy to obtain water diffusion and velocity maps for wheat grain in vivo. Finally we suggest how the method may be used in the study of polymer-water interactions in an unusual adjunct to conventional polymer self-diffusion studies.  相似文献   

6.
7.
In this paper, we present an approach to designing decentralized robot control policies that mimic certain microscopic and macroscopic behaviors of ants performing collective transport tasks. In prior work, we used a stochastic hybrid system model to characterize the observed team dynamics of ant group retrieval of a rigid load. We have also used macroscopic population dynamic models to design enzyme-inspired stochastic control policies that allocate a robotic swarm around multiple boundaries in a way that is robust to environmental variations. Here, we build on this prior work to synthesize stochastic robot attachment–detachment policies for tasks in which a robotic swarm must achieve non-uniform spatial distributions around multiple loads and transport them at a constant velocity. Three methods are presented for designing robot control policies that replicate the steady-state distributions, transient dynamics, and fluxes between states that we have observed in ant populations during group retrieval. The equilibrium population matching method can be used to achieve a desired transport team composition as quickly as possible; the transient matching method can control the transient population dynamics of the team while driving it to the desired composition; and the rate matching method regulates the rates at which robots join and leave a load during transport. We validate our model predictions in an agent-based simulation, verify that each controller design method produces successful transport of a load at a regulated velocity, and compare the advantages and disadvantages of each method.  相似文献   

8.
We propose a (time) multiscale method for the coarse-grained analysis of collective motion and decision-making in self-propelled particle models of swarms comprising a mixture of ‘naïve’ and ‘informed’ individuals. The method is based on projecting the particle configuration onto a single ‘meta-particle’ that consists of the elongation of the flock together with the mean group velocity and position. We find that the collective states can be associated with the transient and asymptotic transport properties of the random walk followed by the meta-particle, which we assume follows a continuous time random walk (CTRW). These properties can be accurately predicted at the macroscopic level by an advection-diffusion equation with memory (ADEM) whose parameters are obtained from a mean group velocity time series obtained from a single simulation run of the individual-based model.  相似文献   

9.
Global positioning system (GPS) technology has improved the speed, accuracy, and ease of time-motion analyses of field sport athletes. The large volume of numerical data generated by GPS technology is usually summarized by reporting the distance traveled and time spent in various locomotor categories (e.g., walking, jogging, and running). There are a variety of definitions used in the literature to represent these categories, which makes it nearly impossible to compare findings among studies. The purpose of this work was to propose standard definitions (velocity ranges) that were determined by an objective analysis of time-motion data. In addition, we discuss the limitations of the existing definition of a sprint and present a new definition of sprinting for field sport athletes. Twenty-five GPS data files collected from 5 different sports (men's and women's field hockey, men's and women's soccer, and Australian Rules Football) were analyzed to identify the average velocity distribution. A curve fitting process was then used to determine the optimal placement of 4 Gaussian curves representing the typical locomotor categories. Based on the findings of these analyses, we make recommendations about sport-specific velocity ranges to be used in future time-motion studies of field sport athletes. We also suggest that a sprint be defined as any movement that reaches or exceeds the sprint threshold velocity for at least 1 second and any movement with an acceleration that occurs within the highest 5% of accelerations found in the corresponding velocity range. From a practical perspective, these analyses provide conditioning coaches with information on the high-intensity sprinting demands of field sport athletes, while also providing a novel method of capturing maximal effort, short-duration sprints.  相似文献   

10.
尚为进  胡争  李彬 《生物磁学》2009,(14):2724-2727
目的:探讨多普勒彩色血流成像中流速估计的方法。方法:对多普勒彩色血流成像中流速估计的两种算法-相域自相关和时域互相关进行了理论分析,在FieldII软件平台上对两种算法进行仿真。分别在中心流速为0.5m/s(中低速)和0.5m/s(高速)时进行血流速度仿真,得出了各自不同中心流速的血流速度分布曲线,并对其进行了对比分析。结果:相域自相关方法对中低速血流进行流速传计的精确度和稳健性都强于时域互相关方法;对于高速血流相域方法估计结果产生了混叠,但时域方法可以通过加大最值的搜索范围仍然能够得到正确的估计结果。结论:两种方法各有优缺点,互为补充。在实际应用中可以考虑结合使用两种方法,充分利用二者的优点。  相似文献   

11.
Quantifying the interactions between excitation and contraction is fundamental to furthering our understanding of cardiac physiology. To date simulating these effects in strongly coupled excitation and contraction tissue models has proved computationally challenging. This is in part due to the numerical methods implemented to maintain numerical stability in previous simulations, which produced computationally intensive problems. In this study, we analytically identify and quantify the velocity and length dependent sources of instability in the current established coupling method and propose a new method which addresses these issues. Specifically, we account for the length and velocity dependence of active tension within the finite deformation equations, such that the active tension is updated at each intermediate Newton iteration, within the mechanics solution step. We then demonstrate that the model is stable and converges in a three-dimensional rod under isometric contraction. Subsequently, we show that the coupling method can produce stable solutions in a cube with many of the attributes present in the heart, including asymmetrical activation, an inhomogeneous fibre field and a nonlinear constitutive law. The results show no instabilities and quantify the error introduced by discrete length updates. This validates our proposed coupling framework, demonstrating significant improvement in the stability of excitation and contraction simulations.  相似文献   

12.
Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe an application of “optical flow”, the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determination from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhodamine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters and is correlated the best to the size of the mitochondria.  相似文献   

13.
Ultrasound velocity is one of the key acoustic parameters for noninvasive diagnosis of osteoporosis. Ultrasound phase velocity can be uniquely measured from the phase of the ultrasound signal at a specified frequency. Many previous studies used fast Fourier transform (FFT) to determine the phase velocity, which may cause errors due to the limitations of FFT. The new phase tracking technique applied an adaptive tracking algorithm to detect the time dependent phase and amplitude of the ultrasound signal at a specified frequency. This overcame the disadvantages of FFT to ensure the accuracy of the ultrasound phase velocity. As a result, the new method exhibited high accuracy in the measurement of ultrasound phase velocity of two phantom blocks with the error less than 0.4%. 41 cubic trabecular samples from sheep femoral condyles were used in the study. The phase velocity of the samples using the new method had significantly high correlation to the bulk stiffness of the samples (r = 0.84) compared to the phase velocity measured using fast Fourier transform FFT (r = 0.14). In conclusion, the new method provided an accurate measurement of the ultrasound phase velocity in bone.  相似文献   

14.

Background

Recently a new automatic device that measures brachial-ankle pulse wave velocity using an oscillometric method has been developed. However, the practical significance of brachial-ankle pulse wave velocity measurement remains uncertain. The purpose of this study was to examine the association between brachial-ankle pulse wave velocity and symptomatic cerebral infarction in patients with type 2 diabetes.

Methods

One thousand sixty six patients with type 2 diabetes were studied cross-sectionally. Measurements of brachial-ankle pulse wave velocity were made using the automatic device. Logistic regression analysis was used to calculate the odds ratio for cerebral infarction.

Results

The presence of symptomatic cerebral infarction was confirmed in 86 patients. In these patients brachial-ankle pulse wave velocity was found to be significantly higher than in patients without cerebral infarction (18.94 ± 4.95 versus 16.46 ± 3.62 m/s, p < 0.01). The association between brachial-ankle pulse wave velocity and cerebral infarction remained significant after adjustment for traditional risk factors. There was an increasing odds ratio for each tertile of brachial-ankle pulse wave velocity, from the second tertile (odds ratio, 2.28; 95% confidence interval, 1.05 to 4.94), to the third (odds ratio, 2.53; 95% confidence interval, 1.09 to 5.86).

Conclusion

Overall, we conclude that an increase in brachial-ankle pulse wave velocity is associated with symptomatic cerebral infarction in patients with type 2 diabetes.  相似文献   

15.
The required performance of an analytical method depends on the purpose for which it will be used. As a methodology matures, it may find new application, and the performance demands placed on the method can increase. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has a long and distinguished history with important contributions to molecular biology. Now the technique is transitioning into industrial settings, and among them, SV-AUC is now used to quantify the amount of protein aggregation in biopharmaceutical protein products, often at levels less than 1% of the total protein mass. In this paper, we review recent advances to SV methodology which have been shown to improve quantitation of protein aggregation. Then we discuss the performance of the SV method in its current state, with emphasis on the precision and quantitation limit of the method, in the context of existing industrial guidance on analytical method performance targets for quantitative methods.  相似文献   

16.
Two types of unsteadiness must be considered when spectral analysis is applied to unsteady turbulence such as that found in the aorta. Firstly, the statistical properties of the turbulence itself change in time and so the definition of spectral density must be reconsidered. Secondly, the turbulent velocity fluctuations, whether they are steady or unsteady, are carried by an unsteady convective velocity which alters their properties as seen by a stationary observer.

In the present study, unsteadiness of turbulence in the latter sense is discussed by applying Taylor's hypothesis of ‘frozen turbulence’ to turbulence with an unsteady convective velocity. If both a ‘frozen’ pattern of turbulence and a constant convective velocity are assumed, measured frequency spectra can be easily transformed into wavenumber (spatial) spectra, usually as a trivial part of normalisation. In the case of unsteady turbulence, however, the convection velocity is no longer constant and the conventional method can not be used. A new method of estimating the spatial properties of unsteady turbulence is proposed in which the temporal fluctuations of the turbulent velocity are transformed into spatial fluctuations using a nonlinear transformation based upon the unsteady convective velocity. The transformed data are then Fourier analysed to yield a wavenumber spectrum directly.

The proposed method is applied to data obtained in the canine ascending aorta. Spectra calculated by the proposed method differ significantly from those obtained by the conventional method, particularly in the high wavenumber (or frequency) range. This difference is discussed as an ‘aliasing’ phenomenon that has also been known in steady turbulence.  相似文献   


17.
In the present article, we have presented the peristaltic flow of an Oldroyd 8-constant fluid in an endoscope. The governing equations for the flow problem are simplified using long wavelength and low Reynold's number approximations. The solutions of the simplified problem are calculated using (i) Homotopy analysis method and (ii) Shooting method. The comparison of both the solutions shows a very good agreement between the results. The graphical results for the velocity field and stresses are presented to show the physical behaviour of all the parameters appearing in the problem.  相似文献   

18.
We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR system (after Sienkiewicz, A., K. Qu, and C. P. Scholes. 1994. Rev. Sci. Instrum. 65:68-74) accommodated a miniature quartz capillary mixer with an approximately 0.5 microliter delivery volume to the midpoint of the EPR-active zone. The flow velocity was varied in a preprogrammed manner, giving a minimum delivery time of approximately 150 microseconds. The mixing was efficient, and we constructed kinetics in the 0.15-2. 1-ms time range by plotting the continuous wave EPR signal taken during flow versus the reciprocal of flow velocity. We followed the refolding kinetics of iso-1-cytochrome c spin-labeled at Cysteine 102. At 20 degrees C, upon dilution of guanidinium hydrochloride denaturant, a fast phase of refolding was resolved with an exponential time constant of 0.12 ms, which was consistent with the "burst" phase observed by optically detected flow techniques. At 7 degrees C the kinetic refolding time of this phase increased to 0.5 ms.  相似文献   

19.
Teu KK  Kim W  Fuss FK  Tan J 《Journal of biomechanics》2006,39(7):1227-1238
The manner in which anatomical rotation from an individual segment contributes to the position and velocity of the endpoint can be informative in the arena of many athletic events whose goals are to attain the maximal velocity of the most distal segment. This study presents a new method of velocity analysis using dual Euler angles and its application in studying rotational contribution from upper extremity segments to club head speed during a golf swing. Dual Euler angle describes 3D movement as a series of ordered screw motions about each orthogonal axis in a streamlined matrix form-the dual transformation matrix- and allows the translation and rotation component to be described in the same moving frame. Applying this method in biomechanics is a novel idea and the authors have previously applied the methodology to clinical studies on its use in displacement analysis. The focus of this paper is velocity analysis and applications in sports biomechanics. In this study, electrogoniometers (Biometrics, UK) with a frequency of 1000 Hz were attached to a subject during the execution of the swing to obtain the joint angles throughout the motion. The velocity of the club head was then analyzed using the dual velocity which specifies the velocity distribution of a rigid body in screw motion at any point in time as the dual vector. The contributions of each segment to the club-head velocity were also compared. In order to evaluate this method, the calculated position and velocity of the club head were compared to the values obtained from video image analysis. The results indicated that there is good agreement between calculated values and video data, suggesting the suitability of using the Dual Euler method in analyzing a kinematic chain motion.  相似文献   

20.
In this study we describe an ambulatory system for estimation of spatio-temporal parameters during long periods of walking. This original method based on wavelet analysis is proposed to compute the values of temporal gait parameters from the angular velocity of lower limbs. Based on a mechanical model, the medio-lateral rotation of the lower limbs during stance and swing, the stride length and velocity are estimated by integration of the angular velocity. Measurement's accuracy was assessed using as a criterion standard the information provided by foot pressure sensors. To assess the accuracy of the method on a broad range of performance for each gait parameter, we gathered data from young and elderly subjects. No significant error was observed for toe-off detection, while a slight systematic delay (10 ms on average) existed between heelstrike obtained from gyroscopes and footswitch. There was no significant difference between actual spatial parameters (stride length and velocity) and their estimated values. Errors for velocity and stride length estimations were 0.06 m/s and 0.07 m, respectively. This system is light, portable, inexpensive and does not provoke any discomfort to subjects. It can be carried for long periods of time, thus providing new longitudinal information such as stride-to-stride variability of gait. Several clinical applications can be proposed such as outcome evaluation after total knee or hip replacement, external prosthesis adjustment for amputees, monitoring of rehabilitation progress, gait analysis in neurological diseases, and fall risk estimation in elderly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号