首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Plexins are cell surface receptors for semaphorins and regulate cell migration in many cell types. We recently reported that the semaphorin 4D (Sema4D) receptor Plexin-B1 functions as a GTPase-activating protein (GAP) for R-Ras, a member of Ras family GTPases implicated in regulation of integrin activity and cell migration. We characterized the role of R-Ras downstream of Sema4D/Plexin-B1 in cell migration. Activation of Plexin-B1 by Sema4D suppressed the ECM-dependent R-Ras activation, R-Ras-mediated phosphatydylinositol 3-kinase activation, and beta(1) integrin activation through its R-Ras GAP domain, leading to inhibition of cell migration. In addition, inactivation of R-Ras by overexpression of the R-Ras-specific GAP or knockdown of R-Ras by RNA interference was sufficient for suppressing beta(1) integrin activation and cell migration in response to the ECM stimulation. Thus, we conclude that R-Ras activity is critical for ECM-mediated beta(1) integrin activation and cell migration and that inactivation of R-Ras by Sema4D/Plexin-B1-mediated R-Ras GAP activity controls cell migration by modulating the activity of beta(1) integrins.  相似文献   

4.
R-Ras regulates integrin function, but its effects on integrin signaling pathways have not been well described. We demonstrate that activation of R-Ras promoted focal adhesion formation and altered localization of the alpha2beta1 integrin from cell-cell to cell-matrix adhesions in breast epithelial cells. Constitutively activated R-Ras(38V) dramatically enhanced focal adhesion kinase (FAK) and p130(Cas) phosphorylation upon collagen stimulation or clustering of the alpha2beta1 integrin, even in the absence of increased ligand binding. Signaling events downstream of R-Ras differed from integrins and K-Ras, since pharmacological inhibition of Src or disruption of actin inhibited integrin-mediated FAK and p130(Cas) phosphorylation, focal adhesion formation, and migration in control and K-Ras(12V)-expressing cells but had minimal effect in cells expressing R-Ras(38V). Therefore, signaling from R-Ras to FAK and p130(Cas) has a component that is Src independent and not through classic integrin signaling pathways and a component that is Src dependent. R-Ras effector domain mutants and pharmacological inhibition suggest a partial role for phosphatidylinositol 3-kinase (PI3K), but not Raf, in R-Ras signaling to FAK and p130(Cas). However, PI3K cannot account for the Src-independent pathway, since simultaneous inhibition of both PI3K and Src did not completely block effects of R-Ras on FAK phosphorylation. Our results suggest that R-Ras promotes focal adhesion formation by signaling to FAK and p130(Cas) through a novel mechanism that differs from but synergizes with the alpha2beta1 integrin.  相似文献   

5.
The rapid modulation of ligand-binding affinity ("activation") is a central property of the integrin family of cell adhesion receptors. The small GTP-binding protein Ras and its downstream effector kinase Raf-1 suppress integrin activation. In this study we explored the relationship between Ras and the closely related small GTP-binding protein R-Ras in modulating the integrin affinity state. We found that R-Ras does not seem to be a direct activator of integrins in Chinese hamster ovary cells. However, we observed that GTP-bound R-Ras strongly antagonizes the Ras/Raf-initiated integrin suppression pathway. Furthermore, this reversal of the Ras/Raf suppressor pathway does not seem to be via a competition between Ras and R-Ras for common downstream effectors or via an inhibition of Ras/Raf-induced MAP kinase activation. Thus, R-Ras and Ras may act in concert to regulate integrin affinity via the activation of distinct downstream effectors.  相似文献   

6.
7.
Truncated Notch receptors have transforming activity in vitro and in vivo. However, the role of wild-type Notch signaling in neoplastic transformation remains unclear. Ras signaling is deregulated in a large fraction of human malignancies and is a major target for the development of novel cancer treatments. We show that oncogenic Ras activates Notch signaling and that wild-type Notch-1 is necessary to maintain the neoplastic phenotype in Ras-transformed human cells in vitro and in vivo. Oncogenic Ras increases levels and activity of the intracellular form of wild-type Notch-1, and upregulates Notch ligand Delta-1 and also presenilin-1, a protein involved in Notch processing, through a p38-mediated pathway. These observations place Notch signaling among key downstream effectors of oncogenic Ras and suggest that it might be a novel therapeutic target.  相似文献   

8.
9.
Attachment of many cell types to extracellular matrix proteins triggers cell spreading, a process that strengthens cell adhesion and is a prerequisite for many adhesion-dependent processes including cell migration, survival, and proliferation. Cell spreading requires integrins with intact beta cytoplasmic domains, presumably to connect integrins with the actin cytoskeleton and to activate signaling pathways that promote cell spreading. Several signaling proteins are known to regulate cell spreading, including R-Ras, PI 3-kinase, PKCepsilon and Rac1; however, it is not known whether they do so through a mechanism involving integrin beta cytoplasmic domains. To study the mechanisms whereby cell spreading is regulated by integrin beta cytoplasmic domains, we inhibited cell spreading on collagen I or fibrinogen by expressing tac-beta1, a dominant-negative inhibitor of integrin function, and examined whether cell spreading could be restored by the coexpression of either V38R-Ras, p110alpha-CAAX, myr-PKCepsilon, or L61Rac1. Each of these activated signaling proteins was able to restore cell spreading as assayed by an increase in the area of cells expressing tac-beta1. R-Ras and Rac1 rescued cell spreading in a GTP-dependent manner, whereas PKCstraightepsilon required an intact kinase domain. Importantly, each of these signaling proteins required intact beta cytoplasmic domains on the integrins mediating adhesion in order to restore cell spreading. In addition, the rescue of cell spreading by V38R-Ras was inhibited by LY294002, suggesting that PI 3-kinase activity is required for V38R-Ras to restore cell spreading. In contrast, L61Rac1 and myr-PKCstraightepsilon each increased cell spreading independent of PI 3-kinase activity. Additionally, the dominant-negative mutant of Rac1, N17Rac1, abrogated cell spreading and inhibited the ability of p110alpha-CAAX and myr-PKCstraightepsilon to increase cell spreading. These studies suggest that R-Ras, PI 3-kinase, Rac1 and PKCepsilon require the function of integrin beta cytoplasmic domains to regulate cell spreading and that Rac1 is downstream of PI 3-kinase and PKCepsilon in a pathway involving integrin beta cytoplasmic domain function in cell spreading.  相似文献   

10.
We have previously reported the cross-talk between Reelin and Notch-1 signaling pathways, which are 2 major pathways that regulate brain development. We found that Reelin activated Notch-1 signaling, leading to the expression of brain lipid binding protein (BLBP) and the formation of radial glial cells in human neural progenitor cells (hNPCs). In the current study, we investigated the molecular mechanisms by which Reelin activates Notch-1. We show that Reelin-stimulated Notch-1 activation is dependent on Reelin signaling. The induction of Disabled-1 (Dab-1) tyrosine phosphorylation, and the subsequent activation of Src family kinases, were found to be essential steps for the activation of Notch-1 signaling by Reelin. Reelin treatment increased the interaction between Dab-1 and Notch-1 intracellular domain (NICD), and enhanced NICD translocation to the nucleus. This study advances our knowledge of the regulation of Notch-1 activation by Reelin signaling in hNPCs, as an approach to understanding cell fate determination, differentiation, and neurogenesis during brain development.  相似文献   

11.
12.
13.
Specificity and modulation of integrin function have important consequences for cellular responses to the extracellular matrix, including differentiation and transformation. The Ras-related GTPase, R-Ras, modulates integrin affinity, but little is known of the signaling pathways and biological functions downstream of R-Ras. Here we show that stable expression of activated R-Ras or the closely related TC21 (R-Ras 2) induced integrin-mediated migration and invasion of breast epithelial cells through collagen and disrupted differentiation into tubule structures, whereas dominant negative R-Ras had opposite effects. These results imply novel roles for R-Ras and TC21 in promoting a transformed phenotype and in the basal migration and polarization of these cells. Importantly, R-Ras induced an increase in cellular adhesion and migration on collagen but not fibronectin, suggesting that R-Ras signals to specific integrins. This was further supported by experiments in which R-Ras enhanced the migration of cells expressing integrin chimeras containing the alpha2, but not the alpha5, cytoplasmic domain. In addition, a transdominant inhibition previously noted only between integrin beta cytoplasmic domains was observed for the alpha2 cytoplasmic domain; alpha2beta1-mediated migration was inhibited by the expression of excess alpha2 but not alpha5 cytoplasmic domain-containing chimeras, suggesting the existence of limiting factors that bind the integrin alpha subunit. Using pharmacological inhibitors, we found that R-Ras induced migration on collagen through a combination of phosphatidylinositol 3-kinase and protein kinase C, but not MAPK, which is distinct from the other Ras family members, Rac, Cdc42, and N- and K-Ras. Thus, R-Ras communicates with specific integrin alpha cytoplasmic domains through a unique combination of signaling pathways to promote cell migration and invasion.  相似文献   

14.
15.
16.
The activation of integrin adhesion receptors from low to high affinity in response to intracellular cues controls cell adhesion and signaling. Binding of the cytoskeletal protein talin to the beta3 integrin cytoplasmic tail is required for beta3 activation, and the integrin-binding PTB-like F3 domain of talin is sufficient to activate beta3 integrins. Here we report that, whereas the conserved talin-integrin interaction is also required for beta1 activation, and talin F3 binds beta1 and beta3 integrins with comparable affinity, expression of the talin F3 domain is not sufficient to activate beta1 integrins. beta1 integrin activation could, however, be detected following expression of larger talin fragments that included the N-terminal and F1 domains, and mutagenesis indicates that these domains cooperate with talin F3 to mediate beta1 activation. This effect is not due to increased affinity for the integrin beta tail and we hypothesize that the N-terminal domains function by targeting or orienting talin in such a way as to optimize the interaction with the integrin tail. Analysis of beta3 integrin activation indicates that inclusion of the N-terminal and F1 domains also enhances F3-mediated beta3 activation. Our results therefore reveal a role for the N-terminal and F1 domains of talin during integrin activation and highlight differences in talin-mediated activation of beta1 and beta3 integrins.  相似文献   

17.
《The Journal of cell biology》1994,126(5):1287-1298
The ability of single subunit chimeric receptors containing various integrin beta intracellular domains to mimic and/or inhibit endogenous integrin function was examined. Chimeric receptors consisting of the extracellular and transmembrane domains of the small subunit of the human interleukin-2 receptor connected to either the beta 1, beta 3, beta 3B, or beta 5 intracellular domain were transiently expressed in normal human fibroblasts. When expressed at relatively low levels, the beta 3 and beta 5 chimeras mimicked endogenous ligand-occupied integrins and, like the beta 1 chimera (LaFlamme, S. E., S. K. Akiyama, and K. M. Yamada. 1992. J. Cell Biol. 117:437), concentrated with endogenous integrins in focal adhesions and sites of fibronectin fibril formation. In contrast, the chimeric receptor containing the beta 3B intracellular domain (a beta 3 intracellular domain modified by alternative splicing) was expressed diffusely on the cell surface, indicating that alternative splicing can regulate integrin receptor distribution by an intracellular mechanism. Furthermore, when expressed at higher levels, the beta 1 and beta 3 chimeric receptors functioned as dominant negative mutants and inhibited endogenous integrin function in localization to fibronectin fibrils, fibronectin matrix assembly, cell spreading, and cell migration. The beta 5 chimera was a less effective inhibitor, and the beta 3B chimera and the reporter lacking an intracellular domain did not inhibit endogenous integrin function. Comparison of the relative levels of expression of the transfected beta 1 chimera and the endogenous beta 1 subunit indicated that in 10 to 15 h assays, the beta 1 chimera can inhibit cell spreading when expressed at levels approximately equal to the endogenous beta 1 subunit. Levels of chimeric receptor expression that inhibited cell spreading also inhibited cell migration, whereas lower levels were able to inhibit alpha 5 beta 1 localization to fibrils and matrix assembly. Our results indicate that single subunit chimeric integrins can mimic and/or inhibit endogenous integrin receptor function, presumably by interacting with cytoplasmic components critical for endogenous integrin function. Our results also demonstrate that beta intracellular domains, expressed in this context, display specificity in their abilities to mimic and inhibit endogenous integrin function. Furthermore, the approach that we have used permits the analysis of intracellular domain function in the processes of cell spreading, migration and extracellular matrix assembly independent of effects due to the rest of integrin dimers. This approach should prove valuable in the further analysis of integrin intracellular domain function in these and other integrin-mediated processes requiring the interaction of integrins with cytoplasmic components.  相似文献   

18.
The Notch family of transmembrane receptors have been implicated in a variety of cellular decisions in different cell types. Here we investigate the mechanism underlying Notch-1-mediated anti-apoptotic function in T cells using model cell lines as the experimental system. Ectopic expression of the intracellular domain of Notch-1/activated Notch (AcN1) increases expression of anti-apoptotic proteins of the inhibitors of apoptosis (IAP) family, the Bcl-2 family, and the FLICE-like inhibitor protein (FLIP) and inhibits death triggered by multiple stimuli that activate intrinsic or extrinsic pathways of apoptosis in human and murine T cell lines. Numb inhibited the AcN1-dependent induction of anti-apoptotic proteins and anti-apoptotic function. Using pharmacological inhibitors and dominant-negative approaches, we describe a functional role for phosphatidylinositol 3-kinase (PI3K)-dependent activation of the serine-threonine kinase Akt/PKB in the regulation of AcN1-mediated anti-apoptotic function and the expression of FLIP and IAP family proteins. Using a cell line deficient for the T cell-specific, Src family protein, the tyrosine kinase p56(lck) and by reconstitution approaches we demonstrate that p56(lck) is required for the Notch-1-mediated activation of Akt/PKB function. Furthermore, the Src tyrosine kinase inhibitor, PP2, abrogated ectopically expressed AcN1-mediated anti-apoptotic function and phosphorylation of p56(lck). We present evidence that endogenous Notch-1 associates with p56(lck) and PI3K but that Akt/PKB does not co-immunoprecipitate with the Notch1.p56(lck).PI3K complex. Finally, we demonstrate that the Notch1.p56(lck).PI3K complex is present in primary T cells that have been activated in vitro and sustained in culture with the cytokine interleukin-2.  相似文献   

19.
Notch signaling is a potential therapeutic target for various solid and hematopoietic malignancies. We have recently shown that downregulation of Notch-1 expression has significant anti-neoplastic activity in pre-clinical models. However, the mechanisms through which Notch modulation may affect cell fate in cancer remain poorly understood. We had previously shown that Notch-1 prevents apoptosis and is necessary for pharmacologically induced differentiation in murine erythroleukemia (MEL) cells. We investigated the mechanisms of these effects using three experimental strategies: (1) MEL cells stably transfected with antisense Notch-1 or constitutively active Notch-1, (2) activation of Notch-1 by a cell-associated ligand, and (d3) activation of Notch-1 by a soluble peptide ligand. We show that: (1) downregulation of Notch-1 sensitizes MEL cells to apoptosis induced by a Ca(2+) influx or anti-neoplastic drugs; (2) Notch-1 downregulation induces phosphorylation of c-Jun N-terminal kinase (JNK) while constitutive activation of Notch-1 or prolonged exposure to a soluble Notch ligand abolishes it; (3) Notch-1 has dose- and time-dependent effects on the levels of apoptotic inhibitor Bcl-x(L) and cell cycle regulators p21(cip1/waf1), p27(kip1), and Rb; and (4) Notch-1 activation by a cell-associated ligand is accompanied by rapid and transient induction of NF-kappaB DNA-binding activity. The relative effects of Notch-1 signaling on these pathways depend on the levels of Notch-1 expression, the mechanism of activation, and the timing of activation. The relevance of these findings to the role of Notch signaling in differentiation and cancer are discussed.  相似文献   

20.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号