首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential polarized phase fluorometry has been used to investigate the depolarizing motions of 1,6-diphenyl-1,3,5-hexatriene (DPH) in the isotropic solvent propylene glycol and in lipid bilayers of dimyristoyl-L-α-phosphatidylcholine (DMPC), dipalmitoyl-L-α-phosphatidylcholine (DPPC), and other phosphatidylcholines. Differential phase fluorometry is the measurement of differences in the phase angles between the parallel and perpendicular components of the fluorescence emission of a sample excited with sinusoidally modulated light. The maximum value of the tangent of the phase angle (tan Δmax) is known to be a function of the isotropy of the depolarizing motions. For DPH in propylene glycol the maximum tangent is observed at 18°C, and this tangent value corresponds precisely with the value expected for an isotropic rotator. Additionally, the rotational rates determined by steady-state polarization measurements are in precise agreement with the differential phase measurements. These results indicate that differential phase fluorometry provides a reliable measure of the probe's rotational rate under conditions where these rotations are isotropic and unhindered.

Rotational rates of DPH obtained from steady-state polarization and differential phase measurements do not agree when this probe is placed in lipid bilayers. The temperature profile of the tan Δ measurements of DPH in DMPC and DPPC bilayers is characterized by a rapid increase of tan Δ at the transition temperature (Tc), followed by a gradual decline in tan Δ at temperatures above Tc. The observed tanΔmax values are only 62 and 43% of the theoretical maximum. This defect in tanΔmax is too large to be explained by any degree of rotational anisotropy. However, these defects are explicable by a new theory that describes the tan Δ values under conditions where the probe's rotational motions are restricted to a limiting anisotropy value, r. Theoretical calculations using this new theory indicate that the temperature dependence of the depolarizing motions of DPH in these saturated bilayers could be explained by a rapid increase in its rotational rate (R) at the transition temperature, coupled with a simultaneous decrease in r at this same temperature. The sensitivity of the tan Δ values to both R and r indicates that differential phase fluorometry will provide a method to describe more completely the depolarizing motion of probes in lipid bilayers.

  相似文献   

2.
The time-resolved fluorescence emission anisotropy of 12-(9-anthroyloxy)stearic acid (12-AS) and 1,6-diphenyl-1,3,5-hexatriene (DPH) have been measured in dipalmitoylphosphatidylcholine liposomes in the presence and absence of 40 mol% cholesterol at temperatures above and below the phase transition temperature (41°C). By using a synchronously-pumped mode-locked frequency-doubled dye laser and single photon counting detection with an excitation response function of 300 picosecond, rotational correlation times down to less than 1 nanosecond could be resolved. Whereas DPH showed only small changes in the limiting anisotropy on the addition of cholesterol, 12-AS showed significant increases in this parameter with the effect being potentiated at higher temperatures. This difference in behaviour has been attributed to a fluorophore-cholesterol interaction that resulted in a change in the fluorophore geometry. Not only do DPH and 12-AS sense different depolarizing rotations due to the different directions of their emission dipoles but also differ in their lipid interactions which alter their limiting anisotropies. The implication is that the comparison of steady-state anisotropy measurements between chemically identical fluorophores in different lipid environments may be complicated by molecular distortions that change the motions to which the steady-state fluorescence parameters will be sensitive.  相似文献   

3.
4.
The fluorophore 4-heptadecyl-7-hydroxycoumarin was used as a probe to study the properties of phospholipid bilayers at the lipid-water interface. To this end, the steady-state fluorescence anisotropy, the differential polarized phase fluorometry, and the emission lifetime of the fluorophore were measured in isotropic viscous medium, in lipid vesicles, and in the membrane of vesicular stomatitis virus. In the isotropic medium (glycerol), the probe showed an increase in the steady-state fluorescence anisotropy with a decrease in temperature, but the emission lifetime was unaffected by the change in temperature. In glycerol, the observed and predicted values for maximum differential tangents of the probe were identical, indicating that in isotropic medium 4-heptadecyl-7-hydroxycoumarin is a free rotator. Nuclear magnetic resonance and differential scanning calorimetric studies with lipid vesicles containing 1-2 mol % of the fluorophore indicated that the packaging density of the choline head groups was affected in the presence of the probe with almost no effect on the fatty acyl chains. The fluorophore partitioned equally well in the gel and liquid-crystalline phase of the lipids in the membrane, and the phase transition of the bilayer lipids was reflected in the steady-state fluorescence anisotropy of the probe. The presence of cholesterol in the lipid vesicles had a relatively small effect on the dynamics of lipids in the liquid-crystalline state, but a significant disordering effect was noted in the gel state. One of the most favorable properties of the probe is that its emission lifetime was unaffected by the physical state of the lipids or by the temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

6.
T Araiso  T Koyama 《Biorheology》1988,25(1-2):253-259
The absolute value of the viscosity in membrane lipid bilayers, which is different from the microviscosity advocated by Shinitzky, could be calculated from steady-state fluorescence depolarization of a hydrocarbon fluorophore, 1,6-diphenyl-1,3,5-hexatriene (DPH). This method was based on the theory of time-resolved fluorescence anisotropy and empirical relationships between fluorescence life time and the anisotropy parameters such as half cone angle in wobbling motion and wobbling diffusion rate of the fluorescent probe. Obtained viscosity values of various membranes from this method were consistent with those from time resolved method within experimental error.  相似文献   

7.
The temperature dependence of fluorescence anisotropy, lifetime and differential tangent of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its polar trimethylammonium derivative (TMA-DPH) were investigated in cytoplasmic membranes ofBacillus subtilis. The fluorescence parameters were compared in the two types of membranes prepared from bacteria cultivated at 20 and 40°C. Steady-state anisotropy measurements showed that within a broad range of temperatures, membranes cultivated at 20°C exhibit significantly lower values than those prepared from cells cultivated at 40°C. The temperature dependence of lifetime and differential tangent measurements (differential polarized phase fluorimetry) were fully consistent with steady-state anisotropy data of both DPH and TMA-DPH. The low anisotropy values in the case of TMA-DPH could be explained by a shorter lifetime and higher temperature-induced decrease as compared with DPH. Surprisingly, the temperature dependence of rotational rateR calculated according to the model of hindered rotations (Lakowicz 1983) gave misleading results. When increasing the temperature from 5 to 25°C, a marked drop of rotational relaxation rate was observed. The minimumR values were measured between 25 and 30°C and further increase of temperature (up to 60°C) was reflected as increase of theR values. Therefore, a new model of “heterogeneous rotations” was developed. This model assumes that even at low temperatures (approaching 0°C) where the differential tangent reaches zero, a fraction of fast rotating molecules exists. The ratio between fast and slowly rotating molecules may be expressed by this model, the newly calculated rotational rates are fully consistent with anisotropy, lifetime and differential tangent measurements and represent the monotonically increasing function of temperature.  相似文献   

8.
Time-resolved decays of fluorescence anisotropy were obtained from frequency-domain measurements of the phase angle difference between the parallel and perpendicular components of the polarized emission and the ratio of the modulated amplitudes. These data were measured at modulation frequencies ranging from 1 to 200 MHz. To demonstrate the general applicability of this method, we describe the resolution of both simple and complex decays of anisotropy. In particular, we resolved single, double, and triple exponential decays of anisotropy and the hindered rotational motions of fluorophores within lipid bilayers. The ease and rapidity with which these results were obtained indicate that frequency-domain measurements are both practical and reliable for the determination of complex decays of anisotropy.  相似文献   

9.
The molecular mechanism of the solubilisation of phospholipid bilayers by nonionic detergents was studied by turbidity changes, carboxyfluorescein fluorescence dequenching, steady-state and time-resolved fluorescence anisotropy of DPH, lifetime measurements, ANS binding and 31P-NMR. Particular attention has been paid to the effective detergent-to-lipid ratio in the lipid phase. The disturbance of the bilayer arrangement varies considerably for various detergents depending on the hydrophilic and lipophilic parts of the molecule. Small amounts of detergents with low CMC (e.g. Triton X-100) can even induce an optimisation of packing of the lipid molecules.  相似文献   

10.
The effect of cholesterol on phospholipid acyl chain packing in bilayers consisting of highly unsaturated acyl chains in the liquid crystalline phase was examined for a series of symmetrically and asymmetrically substituted phosphatidylcholines (PCs). The time-resolved fluorescence emission and decay of fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to characterize equilibrium and dynamic structural properties of bilayers containing 30 mol % cholesterol. The bilayers were composed of symmetrically substituted PCs with acyl chains of 14:0, 18:1n9, 20:4n6, or 22:6n3, containing 0, 1, 4, or 6 double bonds, respectively, and mixed-chain PCs with a saturated 16:0 sn-1 chain and 1, 4, or 6 double bonds in the sn-2 chain. DPH excited-state lifetime was fit to a Lorentzian lifetime distribution, the center of which was increased 1-2 ns by 30 mol % cholesterol relative to the cholesterol-free bilayers. Lifetime distributions were dramatically narrowed by the addition of cholesterol in all bilayers except the two consisting of dipolyunsaturated PCs. DPH anisotropy decay was interpreted in terms of the Brownian rotational diffusion model. The effect of cholesterol on both the perpendicular diffusion coefficient D perpendicular and the orientational distribution function f(theta) varied with acyl chain unsaturation. In all bilayers, except the two dipolyunsaturated PCs, 30 mol % cholesterol dramatically slowed DPH rotational motion and restricted DPH orientational freedom. The effect of cholesterol was especially diminished in di-22:6n3 PC, suggesting that this phospholipid may be particularly effective at promoting lateral domains, which are cholesterol-rich and unsaturation-rich, respectively. The results are discussed in terms of a model for lipid packing in membranes containing cholesterol and PCs with highly unsaturated acyl chains.  相似文献   

11.
Heterogeneity in the lipid organization in lipid bilayers and cell membranes was probed by using the fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DPH attached to the sn-2 position of phosphatidylcholine (DPH-PC). In the presence of protein, it is proposed that the bulk lipids and boundary lipids can potentially provide distinct enough fluorophore environments for two different lifetime centers to be recovered from the analysis of the fluorescence decay. To test this model experiments were performed with cytochrome b5 in 1-palmitoyl-2-oleoylphosphatidylcholine bilayers. The number of boundary lipids of cytochrome b5 is known from the literature or can be calculated from known dimensions, so that for a known protein:lipid ratio the fraction of lipids in the bulk and boundary lipid regions is known. These values were found to closely correspond to the fractions associated with the lifetime centers recovered from an analysis of the fluorescence decay assuming two major fluorophore populations. This indicated that the DPH distributed in a similar manner to the lipids and that its boundary lipid residency time was greater than the excited state lifetime, showing the validity of the approach. An important requirement was that the protein should influence the fluorophore decay sufficiently enough to enable separate lifetime centers for the bulk and boundary lipid fluorophores to be recovered by the analysis. Attempts were made to analyze the fluorescence decay of DPH in liver plasma membranes and microsomes as arising from two distinct fluorophore populations, however, the basic condition was not satisfied. By contrast, using DPH-PC it was possible to extract two separate lifetime centers. The limitations and potential of this approach are critically assessed and it is concluded that in certain circumstances information pertaining to the protein-lipid interfacial region of membranes can be extracted from fluorescence decay heterogeneity properties.  相似文献   

12.
T G Burke  T R Tritton 《Biochemistry》1985,24(21):5972-5980
We have exploited the intrinsic fluorescence properties of the anthracycline antitumor antibiotics to study the dependence on drug structure of relative drug location and dynamics when the anthracyclines were bound to sonicated dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) vesicles at 27.5 degrees C. Iodide quenching experiments at constant ionic strength were used to evaluate the relative accessibilities of the bound fluorophores to membrane-impermeable iodide. Iodide was found to quench the fluorescence of anthracyclines in free solution by both static and dynamic mechanisms, whereas quenching of membrane-bound fluorophores was predominantly due to the dynamic mechanism. Modified Stern-Volmer plots of anthracyclines bound to fluid-phase DMPC bilayers were linear, and the biomolecular rate constant (kq) values ranged from 0.6 X 10(9) to 1.3 X 10(9) M-1 s-1. Modified Stern-Volmer plots of anthracyclines bound to solid-phase DPPC bilayers were curved, indicative of a heterogeneous-bound drug population. A strong correlation between drug hydrophobicity and penetration of the fluorophore into the bilayer was observed for the daunosamine-containing anthracyclines. Steady-state fluorescence anisotropy measurements under iodide quenching conditions were used to investigate the diffusive motions of anthracyclines in isotropic solvent and in fluid-phase DMPC bilayers. Anthracycline derivatives free in solution exhibited limiting anisotropy (alpha infinity) values which decayed to zero at times long compared to the excited-state lifetime, in contrast to anthracyclines bound to fluid-phase DMPC bilayers, which showed nonzero alpha infinity values. Steady-state anisotropies of membrane-bound anthracyclines were found to be governed principally by alpha infinity and not by the mean rotational rate (R).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Polarized fluorescence photobleaching recovery has been used to monitor slow rotational motions of a fluorescently-labeled anti-dinitrophenyl mouse IgGl monoclonal antibody (ANO2) specifically bound to substrate-supported monolayers composed of a mixture of distearoylphosphatidylcholine (DSPC) and dinitrophenyldioleoylphosphatidylethanolamine (DNP-DOPE). ANO2 antibodies were labeled with a new bifunctional carbocyanine fluorophore that has two amino-reactive groups; steady-state fluorescence anisotropy data confirmed the expected result that the ANO2-conjugated bifunctional probe had less independent flexibility than ANO2-conjugated unifunctional fluorescence labels. Rotational mobilities were also measured for the fluorescent lipid 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine (dil) in DSPC and in mixed DSPC/DNP-DOPE monolayers in the presence and absence of unlabeled ANO2 antibodies. The apparent rotational correlation time and fractional mobility of ANO2 on supported monolayers were approximately 70 and approximately 0.3 s, respectively. These measured parameters of rotational mobility did not depend on the ANO2 surface density or on kinetic factors, but addition of unlabeled polyclonal anti-(mouse IgG) antibodies significantly decreased the apparent mobile fraction. The measured fluorescence recovery curves for dil were consistent with two fluorophore populations with rotational correlation times of approximately 4 and approximately 100 s and a population of immobile fluorescent lipid. No difference in fluorescence recovery and decay curves was measured for dil in DSPC monolayers, DSPC/DNP-DOPE monolayers, and DSPC/DNP-DOPE monolayers treated with unlabeled ANO2 antibodies.  相似文献   

14.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The lipid-phase structures of brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were compared by steady-state and phase-modulation measurements of diphenylhexatriene (DPH) and trans- and cis-parinaric acid (tPnA and cPnA) fluorescence. A temperature-scanning system was used which gave reproducible temperature profiles of steady-state and dynamic fluorescence parameters with a resolution of 0.1 degrees C. Steady-state anisotropy of DPH showed a triphasic dependence on temperature with slope discontinuities at 22 +/- 4 and 47 +/- 3 degrees C (BBMV) and at 23 +/- 2 and 48 +/- 1 degrees C (BLMV). At all temperatures, DPH anisotropy in BBMV was greater than that in BLMV. Ground-state heterogeneity analysis of tPnA and cPnA fluorescence lifetime data demonstrated the presence of long (greater than 12 ns) and short (less than 5 ns) lifetime components, interpreted in terms of solid-phase and fluid-phase lipid domains. The fraction of solid-phase phospholipid decreased from 0.9 to 0.1 for BBMV and from 0.7 to 0.3 in BLMV with increasing temperature (10-50 degrees C). In both membranes, tryptophan-PnA fluorescence energy-transfer measurements showed that membrane proteins were surrounded by a fluidlike phospholipid phase. These results demonstrate the inadequacy of steady-state DPH anisotropy data in defining the structural characteristics of complex biological membranes. Results obtained with the phase-sensitive parinaric acid probes demonstrate major differences in the phase structure of the two opposing cell membranes in both the bulk lipid and the lipid microenvironment around membrane proteins.  相似文献   

16.
The inhibition of glycerol 3-phosphate oxidation by oleic acid correlates with changes in membrane microviscosity monitored by the steady-state fluorescence anisotropy of DPH. The dynamic measurements indicate that the changes of both the limiting anisotropy and rotational relaxation time occur in a concentration range where the enzyme activity is strongly inhibited.  相似文献   

17.
1-Palmitoyl-2-[9-(2-anthryl)-nonanoyl]-sn-glycero-3-phosphocholine (Anthr-PC), a non-perturbing phospholipid probe [de Bony, J. and Tocane, J. F. (1983) Chem. Phys. Lipids 32, 105-121], has been designed in order to obtain insight into the membrane lipid organization at a 'microscopic' level, in terms of lateral distribution both in model and in natural membranes [de Bony, J. et al. (1984) Eur. J. Biochem. 143, 373-379; FEBS Lett. 174, 1-6]. In the present study, the molecular motions of this new fluorescent probe embedded in a lipid matrix have been investigated by fluorescence anisotropy techniques in steady-state and time-resolved modes. The results indicate that long axis rotation, monitored by the out-of-plane mode of rotation of the fluorophore, is fast even in the phospholipid gel state. It is moderately sensitive to the phase transition. The data suggest that this rotation is anisotropic. Cholesterol exhibits little effect on this rotation. The rotation of the long axis itself is sensitive to the transition. It is hindered as inferred from measurements at wavelength where both the in-plane and out-of-plane motions contribute to the depolarization of the emitted fluorescence light. Cholesterol restricts this motion. The behaviour of the free 9-(2-anthryl)-nonanoic acid is not significantly different from that of Anthr-PC. These results are discussed with respect to the influence of orientational constraints on the photodimerization process when this lipid probe is used to monitor phospholipid lateral distribution.  相似文献   

18.
We derive equations that describe changes in the steady-state fluorescence polarization of the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) or in the spectrum of electron spin resonance (ESR) nitroxide spin-labeled lipid probes as a function of the intrinsic molecule concentration in lipid bilayer membranes. We make use of an assumption used by us in an earlier paper. The equations are independent of any membrane model. They are valid when a DPH probe or a spin-labeled chain is equivalent to an unlabeled lipid hydrocarbon chain only as far as their general space-filling properties are concerned. We consider cases where the bilayer is either in a single homogeneous phase or in a two-phase region. We apply our equations to analyze ESR data from delipidated sarcoplasmic reticulum membranes and from egg yolk phosphatidylcholine bilayers containing Ca2+-ATPase, and DPH data from dipalmitoylphosphatidylcholine (DPPC) bilayers containing Ca2+-ATPase, both for T greater than Tc. The following conclusions were derived: (i) Ca2+-ATPase oligomers are "randomly" distributed, for the concentrations studied, in the fluid phase. (ii) There is no fixed stoichiometric ratio of "boundary" lipids and oligomers. (iii) Between 24k and 28k lipid molecules are able to surround each isolated oligomer composed of k Ca2+-ATPase monomers. Finally, we apply our equations to analyze DPH studies on DPPC bilayers containing Ca2+-ATPase for T less than Tc. We find that the results reported are in accord with the predictions of the model. In the Appendix, we show that an analytical expression for probabilities used by us is in very good agreement with the results of computer simulation.  相似文献   

19.
Cholesterol dynamics in membranes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Time-resolved fluorescence anisotropy of the sterol analogue, cholestatrienol, and 13C nuclear magnetic resonance (NMR) spin lattice relaxation time (T1c) measurements of [13C4] labeled cholesterol were exploited to determine the correlation times characterizing the major modes of motion of cholesterol in unsonicated phospholipid multilamellar liposomes. Two modes of motion were found to be important: (a) rotational diffusion and (b) time dependence of the orientation of the director for axial diffusion, or "wobble." From the time-resolved fluorescence anisotropy decays of cholestatrienol in egg phosphatidylcholine (PC) bilayers, a value for tau perpendicular, the correlation time for wobble, of 0.9 x 10(-9) s and a value for S perpendicular, the order parameter characterizing the same motion, of 0.45 s were calculated. Both tau perpendicular and S perpendicular were relatively insensitive to temperature and cholesterol content of the membranes. The T1c measurements of [13C4] labeled cholesterol did not provide a quantitative determination of tau parallel, the correlation time for axial diffusion. T1c from the lipid hydrocarbon chains suggested a value for tau perpendicular similar to that for cholesterol. Steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in a variety of pure and mixed lipid multilamellar liposomes. Both the lipid headgroups and the lipid hydrocarbons chains contributed to the determination of the sterol environment in the membrane, as revealed by these fluorescence measurements. In particular, effects of the phosphatidylethanolamine (PE) headgroup and of multiple unsaturation in the lipid hydrocarbon chains were observed. However, while the steady-state anisotropy was sensitive to these factors, the time-resolved fluorescence analysis indicated that tau perpendicular was not strongly affected by the lipid composition of the membrane. S perpendicular may be increased by the presence of PE. Both steady-state anisotropy measurements and time-resolved anisotropy measurements of cholestatrienol were used to probe sterol behavior in three biological membranes: bovine rod outer segment (ROS) disk membranes, human erythrocyte plasma membranes, and light rabbit muscle sarcoplasmic reticulum membranes. In the ROS disk membranes the value for S perpendicular was marginally higher than in the PC membranes, perhaps reflecting the influence of PE. The dramatic difference noted was in the value for tau perpendicular. In both the ROS disk membranes and the erythrocyte membranes, tau perpendicular was one-third to one-fifth of tau perpendicular in the phospholipid bilayers. This result may reveal an influence of membrane proteins on sterol behavior.  相似文献   

20.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号