首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 834 毫秒
1.
Experimental manipulation in birds has shown that trunk dermis has a double origin: dorsally, it derives from the somite dermomyotome, while ventrally, it is formed by the somatopleure. Taking advantage of an nlacZ reporter gene integrated into the mouse Msx1 locus (Msx1(nlacZ) allele), we detected segmental expression of the Msx1 gene in cells of the dorsal mesenchyme of the trunk between embryonic days 11 and 14. Replacing somites from a chick host embryo by murine Msx1(nlacZ )somites allowed us to demonstrate that these Msx1-(beta)-galactosidase positive cells are of somitic origin. We propose that these cells are dermal progenitor cells that migrate from the somites and subsequently contribute to the dorsalmost dermis. By analysing Msx1(nlacZ) expression in a Splotch mutant, we observed that migration of these cells does not depend on Pax3, in contrast to other migratory populations such as limb muscle progenitor cells and neural crest cells. Msx1 expression was never detected in cells overlying the dermomyotome, although these cells are also of somitic origin. Therefore, we propose that two somite-derived populations of dermis progenitor cells can be distinguished. Cells expressing the Msx1 gene would migrate from the somite and contribute to the dermis of the dorsalmost trunk region. A second population of cells would disaggregate from the somite and contribute to the dermis overlying the dermomyotome. This population never expresses Msx1. Msx1 expression was investigated in the context of the onset of dermis formation monitored by the Dermo1 gene expression. The gene is downregulated prior to the onset of dermis differentiation, suggesting a role for Msx1 in the control of this process.  相似文献   

2.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed myoblasts that do not express myogenic differentiation genes such as MyoD. We find that ectopic expression of Msx1 in the forelimb and somites of chicken embryos inhibits MyoD expression as well as muscle differentiation. Conversely, ectopic expression of Pax3 activates MyoD expression, while co-ectopic expression of Msx1 and Pax3 neutralizes their effects on MyoD. Moreover, we find that Msx1 represses and Pax3 activates MyoD regulatory elements in cell culture, while in combination, Msx1 and Pax3 oppose each other's trancriptional actions on MyoD. Finally, we show that the Msx1 protein interacts with Pax3 in vitro, thereby inhibiting DNA binding by Pax3. Thus, we propose that Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors via direct protein-protein interaction. Our results implicate functional antagonism through competitive protein-protein interactions as a mechanism for regulating the differentiation state of migrating cells.  相似文献   

3.
We have combined the use of mouse genetic strains and the mouse-into-chicken chimera system to determine precisely the sequence of forelimb colonization by presomitic mesoderm (PSM)-derived myoblasts and angioblasts, and the possible role of this latter cell type in myoblast guidance. By creating a new Flk1/Pax3 double reporter mouse line, we have established the precise timetable for angioblast and myoblast delamination/migration from the somite to the limb bud. This timetable was conserved when mouse PSM was grafted into a chicken host, which further validates the experimental model. The use of Pax3(GFP/GFP) knockout mice showed that establishment of vascular endothelial and smooth muscle cells (SMCs) is not compromised by the absence of Pax3. Of note, Pax3(GFP/GFP) knockout mouse PSM-derived cells can contribute to aortic, but not to limb, SMCs that are derived from the somatopleure. Finally, using the Flk1(lacZ)(/)(lacZ) knockout mouse, we show that, in the absence of angioblast and vascular network formation, myoblasts are prevented from migrating into the limb. Taken together, our study establishes for the first time the time schedule for endothelial and skeletal muscle cell colonization in the mouse limb bud and establishes the absolute requirement of endothelial cells for myoblast delamination and migration to the limb. It also reveals that cells delaminating from the somites display marked differentiation traits, suggesting that if a common progenitor exists, its lifespan is extremely short and restricted to the somite.  相似文献   

4.
5.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   

6.
Somites are the source of hypaxial musculature including skeletal muscles of the limb, tongue, and trunk. To get insight into the function of mouse Lbx1 homeobox gene in early somitic mesoderm differentiation, in situ hybridization analyses were performed. At the 4-6 somite stage (8 dpc), Lbx1 was first expressed in the lateral portion of the epithelial somite and dermomyotomal epithelium. This was in contrast to the expression of myf-5 in the medial region of the somite. The lateral expression of Lbx1 in somitic mesoderm then occurred regionally along the anterior-posterior body axis. Later, at 10 dpc (stage 1 of limb bud development), Lbx1-positive migrating cells originated in the lateral dermomyotomal lips at occipital, forelimb, and hindlimb levels. They also expressed Pax-3 and c-met, known as markers of the migrating limb muscle precursor cells. In stage 4 hindlimb bud (11.5 dpc), the dorsal and ventral muscle precursor populations expressed Lbx1. In stage 8 forelimb buds (12.5 dpc), Lbx1 expression was reduced in the proximal muscle masses, where the high expression of myogenin accompanying muscle differentiation was detected. These results suggest that mouse Lbx1 might be involved in the commitment or determination of a muscle cell subpopulation during hypaxial musculature development. J. Exp. Zool. 286:270-279, 2000.  相似文献   

7.
We show that cells of the dorsal aorta, an early blood vessel, and of the myotome, the first skeletal muscle to form within the somite, derive from a common progenitor in the mouse embryo. This conclusion is based on a retrospective clonal analysis, using a nlaacZ reporter targeted to the alpha-cardiac actin gene. A rare intragenic recombination event results in a functional nlacZ sequence, giving rise to clones of beta-galactosidase-positive cells. Periendothelial and vascular smooth muscle cells of the dorsal aorta are the main cell types labelled, demonstrating that these are clonally related to the paraxial mesoderm-derived cells of skeletal muscle. Rare endothelial cells are also seen in some clones. In younger clones, arising from a recent recombination event, myotomal labelling is predominantly in the hypaxial somite, adjacent to labelled smooth muscle cells in the aorta. Analysis of Pax3(GFP/+) embryos shows that these cells are Pax3 negative but GFP positive, with fluorescent cells in the intervening region between the aorta and the somite. This is consistent with the direct migration of smooth muscle precursor cells that had expressed Pax3. These results are discussed in terms of the paraxial mesoderm contribution to the aorta and of the mesoangioblast stem cells that derive from it.  相似文献   

8.
Pax3 functions in cell survival and in pax7 regulation   总被引:11,自引:0,他引:11  
In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  相似文献   

9.
10.
In mammalian embryos, myogenic precursor cells emigrate from the ventral lip of the dermomyotome and colonize the limbs, tongue and diaphragm where they differentiate and form skeletal muscle. Previous studies have shown that Pax3, together with the c-Met receptor tyrosine kinase and its ligand Scatter Factor (SF) are necessary for the migration of hypaxial muscle precursors in mice. Lbx1 and Pax3 are co-expressed in all migrating hypaxial muscle precursors, raising the possibility that Lbx1 regulates their migration. To examine the function of Lbx1 in muscle development, we inactivated the Lbx1 gene by homologous recombination. Mice lacking Lbx1 exhibit an extensive loss of limb muscles, although some forelimb and hindlimb muscles are still present. The pattern of muscle loss suggests that Lbx1 is not required for the specification of particular limb muscles, and the muscle defects that occur in Lbx1(-/-) mice can be solely attributed to changes in muscle precursor migration. c-Met is expressed in Lbx1 mutant mice and limb muscle precursors delaminate from the ventral dermomyotome but fail to migrate laterally into the limb. Muscle precursors still migrate ventrally and give rise to tongue, diaphragm and some limb muscles, demonstrating Lbx1 is necessary for the lateral, but not ventral, migration of hypaxial muscle precursors. These results suggest that Lbx1 regulates responsiveness to a lateral migration signal which emanates from the developing limb.  相似文献   

11.
We have isolated the cDNA of avian Mox2 and analyzed its expression pattern during somitogenesis and limb bud formation. Mox2 plays an important role in limb muscle differentiation in the mouse. Mox2 is expressed in the somites of developing chick embryos and in presumptive migrating myoblasts from the dermomyotome to the limb buds. It is also expressed in the ventral and dorsal part of limb buds and is associated with non-proliferating myoblasts. Significant differences were observed in chick and mouse expression patterns, namely in the chick dermomyotome and limb.  相似文献   

12.
13.
14.
15.
16.
In order to identify prospective limb muscle cells in a frog, we cloned Lbx1 from the direct developing frog Eleutherodactylus coqui. Like in embryos of the frog Xenopus laevis but unlike in other vertebrates, EcLbx1 is expressed in all trunk somites. Like in embryos of chick, mouse, and zebrafish, cells expressing EcLbx1 are then found in limb buds, consistent with migration of those cells from somites. EcLbx1 is also expressed in the dorsal spinal cord as in other vertebrates.  相似文献   

17.
The chicken Tbx gene, Tbx18, is expressed in lateral plate mesoderm, limb, and developing somites. Here we show that Tbx18 is expressed transiently in axial mesenchyme during somite segmentation. We present evidence from overexpression and transplantation experiments that Tbx18 controls fissure formation in the late stages of somite maturation. In presumptive wing lateral plate mesoderm, ectopic Tbx18 expression leads to anterior extension of the wing bud. These results suggest that Tbx18 is involved in producing mesodermal boundaries, generating in paraxial mesoderm morphological boundaries between somites and in lateral plate mesoderm a wing- or non-wing-forming boundary.  相似文献   

18.
The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号