首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
2.
The combinations of three genotypes of Lolium perenne with and without (i) infection by the fungal endophyte Neotyphodium lolii, (ii) infection by ryegrass mosaic virus and (iii) one of five different forms of abiotic stress were studied in pot experiments in a glasshouse. The five abiotic stress treatments were (i) low pH (compared with ‘optimal’ pH), (ii) cutting plants to a height of 1 cm (compared with 5 cm), (iii) shading (compared with no shading), (iv) cutting plants at 2‐weekly intervals (compared with 6 wk) and (v) low nitrogen applied (compared with ‘high’ nitrogen applied). On average, over the five experiments, the accumulated herbage dry weight was 10% more for N. lolii‐infected plants than uninfected, 22% more for virus‐free plants than infected, and 265% more for ‘unstressed’ plants than for plants with abiotic stress. The effects of N. lolii infection on plant growth when the plants were under abiotic or biotic stress were not consistent.  相似文献   

3.
黑麦草内生真菌感染状况的检测及定量分析   总被引:1,自引:0,他引:1  
选取内生真菌特异性引物,成功建立了利用PCR技术对黑麦草中内生真菌感染状况的检测和定量分析方法。此检测方法的准确性高于常规乳酸-苯胺蓝染色法。利用实时荧光PCR定量分析的结果表明:不同植株之间内生真菌含量差异较大,而同株植物相同龄级分蘖之间内生真菌含量无显著差异。由此可见内生真菌的含量不仅与植物种以及品种有关,也与植物的基因型密切相关。  相似文献   

4.
Background and Aims Neotyphodium lolii is a fungal endophyteof perennial ryegrass (Lolium perenne), improving grass fitnessthrough production of bioactive alkaloids. Neotyphodium speciescan also affect growth and physiology of their host grasses(family Poaceae, sub-family Pooideae), but little is known aboutthe mechanisms. This study examined the effect of N. lolii onnet photosynthesis (Pn) and growth rates in ryegrass genotypesdiffering in endophyte concentration in all leaf tissues. • Methods Plants from two ryegrass genotypes, Nui D andNui UIV, infected with N. lolii (E+) differing approx. 2-foldin endophyte concentration or uninfected clones thereof (E–)were grown in a controlled environment. For each genotype xendophyte treatment, plant growth rates were assessed as tilleringand leaf extension rates, and the light response of Pn, darkrespiration and transpiration measured in leaves of young (30–45d old) and old (>90 d old) plants with a single-chamber openinfrared gas-exchange system. • Key Results Neotyphodium lolii affected CO2-limited ratesof Pn, which were approx. 17 % lower in E+ than E– plants(P < 0·05) in the young plants. Apparent photon yieldand dark respiration were unaffected by the endophyte (P >0·05). Neotyphodium lolii also decreased transpiration(P < 0·05), but only in complete darkness. There wereno endophyte effects on Pn in the old plants (P > 0·05).E+ plants grew faster immediately after replanting (P < 0·05),but had approx. 10 % lower growth rates during mid-log growth(P < 0·05) than E– plants, but there was noeffect on final plant biomass (P > 0·05). The endophyteeffects on Pn and growth tended to be more pronounced in NuiUIV, despite having a lower endophyte concentration than NuiD. • Conclusions Neotyphodium lolii affects CO2 fixation,but not light interception and photochemistry of Pn. The impactof N. lolii on plant growth and photosynthesis is independentof endophyte concentration in the plant, suggesting that theendophyte mycelium is not simply an energy drain to the plant.However, the endophyte effects on Pn and plant growth are stronglydependent on the plant growth phase.  相似文献   

5.
Aims The goal of the study was to apply Fourier transform infrared (FTIR) spectroscopy followed by chemometrical data treatment for the differentiation of fungi-infected perennial ryegrass (Lolium perenne) from uninfected grass.Methods FTIR was used to rapidly discriminate between leaves of perennial ryegrass (L. perenne) infected by a fungal endophyte (Epichlo?; asexual forms: Neotyphodium) and uninfected leaves. Besides drying and grinding of the sampled leaves, no other preparation steps were needed. FTIR measurements were performed in the attenuated total reflection (ATR) mode. Aliquots of powdered leaf samples were placed on a ZnSe crystal and the spectra were collected, followed by chemometrical analysis (multidimensional factor analysis, hierarchical cluster analysis).Important findings ATR-FTIR allowed a rapid detection of fungal infections in the plant material and proved to be a fast and reliable tool for the differentiation of plant biomass without the need of time-consuming sample preparation.  相似文献   

6.
黑麦草(Lolium perenne L.)内生真菌的检测、分离及鉴定   总被引:5,自引:0,他引:5  
从多年生黑麦草(LoliumperenneL.)5个品种———SR4000、Pinnacle、Topgun、CalypsoⅡ、Justus中分离出61个菌株。次培养后,所得形态稳定的菌株可分为4个形态群,依据其形态特征及APPCR的结果,确定其中的57个分离菌株为Neotyphodiumlolii。  相似文献   

7.
8.
9.
10.
The symbiotic relationships between Neotyphodium endophytes (Clavicipitacea) and certain cool‐season (C3) grasses result in the synthesis of several alkaloids that defend the plant against herbivory. Over a 3 month period we evaluated the effects of temperature on the expression of these alkaloids in tall fescue, Festuca arundinacea Schreb, and perennial ryegrass, Lolium perenne L. (Poaceae). Response surface regression analysis indicated that month, temperature, and their interaction had an impact on the alkaloid levels in both grasses. We aimed to identify the alkaloids most closely associated with enhanced resistance to the fall armyworm, Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae), and clarify the role of temperature in governing the expression of these alkaloids. The dry weights and survival of fall armyworms feeding on endophyte‐infected tall fescue or perennial ryegrass were significantly lower than for those feeding on uninfected grass, whereas endophyte infection had no significant influence on survival. For tall fescue, a four‐alkaloid model consisting of a plant alkaloid, perloline, and the fungal alkaloids ergonovine chanoclavine, and ergocryptine, explained 47% of the variation in fall armyworm dry weight, whereas a three‐alkaloid model consisting of the plant alkaloid perloline methyl ether and the fungal alkaloids ergonovine and ergocryptine explained 70% of the variation in fall armyworm dry weight on perennial ryegrass. Although temperature had a significant influence on overall alkaloid expression in both grasses, the influence of temperature on individual alkaloids varied over time. The levels of those alkaloids most closely linked to armyworm performance increased linearly or curvilinearly with increasing temperature during the last 2 months of the study. We conclude that the growth temperature of grasses can influence the performance of fall armyworm, and that this effect may be mediated through a set of plant‐ and endophyte‐related alkaloids.  相似文献   

11.
Lolium perenne cultivars differing in their capacity to accumulate water soluble carbohydrates (WSCs) were infected with three strains of fungal Neotyphodium lolii endophytes or left uninfected. The endophyte strains differed in their alkaloid profiles. Plants were grown at two different levels of nitrogen (N) supply in a controlled environment. Metabolic profiles of blades were analyzed using a variety of analytical methods. A total of 66 response variables were subjected to a principle components analysis and factor rotation. The first three rotated factors (46% of the total variance) were subsequently analyzed by analysis of variance. At high N supply nitrogenous compounds, organic acids and lipids were increased; WSCs, chlorogenic acid (CGA), and fibers were decreased. The high-sugar cultivar 'AberDove' had reduced levels of nitrate, most minor amino acids, sulfur, and fibers compared to the control cultivar 'Fennema', whereas WSCs, CGA, and methionine were increased. In plants infected with endophytes, nitrate, several amino acids, and, magnesium were decreased; WSCs, lipids, some organic acids, and CGA were increased. Regrowth of blades was stimulated at high N, and there was a significant endophyte x cultivar interaction on regrowth. Mannitol, a fungal specific sugar alcohol, was significantly correlated with fungal biomass. Our findings suggest that effects of endophytes on metabolic profiles of L. perenne can be considerable, depending on host plant characteristics and nutrient supply, and we propose that a shift in carbon/N ratios and in secondary metabolite production as seen in our study is likely to have impacts on herbivore responses.  相似文献   

12.
Two populations of perennial ryegrass ( Lolium perenne L.) S23, selected for contrasting rates of yield and mature leal dark respiration, were used in this study. Since previous work showed that yield decreased severely in population GL66 due to mechanical perturbation, possible effects on respiration rates were examined. Apart from a transient increase in population GL72, there was no effect on the respiration rate but mechanical perturbation did affect other processes. Handling caused transpiration ratesinthe light to increas for GL72, and in the dark to decrease for GL66. In the logger term, the nitrogen content decreased in handled plants grown at high density. These results emphasize that handling plants should be reduced to a minimum since it might have major effect on several processes. It is concluded that the original selection for the Lolium population was indeed on contrasting rates in yield and respiration. Furthermore it is argued that the existence of low- and high-yielding genotypes can be attributed to the dissimilar responses of different genotypes to mechanical influence.  相似文献   

13.
Clonal tillers of a genotype of perennial ryegrass (Lolium perenne), either with or without the endophytic fungus Acremonium lolii, were grown under natural light in flowing nutrient solutions with mineral N maintained automatically at concentrations of 3 or 30μm NH4NO3 for 28 days. Uptake of N was monitored daily and dry matter production was assessed by sequential harvesting. The presence of endophyte had no significant effect on shoot or root biomass production at either N level, but shoot: root ratios were significantly increased by endophyte infection at both N levels at some harvests. All plants absorbed NH4+ preferentially to NO3- and the ratio was not affected by endophyte infection. Also, infection did not affect total N content of plants, which was significantly more in plants at the higher N level than at the lower level. It is concluded that endophyte infection had only minor effects on growth and N economy of the plant, under the conditions imposed in this experiment.  相似文献   

14.
Simulated swards of perennial ryegrass ( Lolium perenne ) growing in 1-m3 soil blocks in the glasshouse were either well watered or deprived of water for 57 d and then rewatered. The first aim was to measure effects of drought on sugar (water-soluble carbohydrate) composition of laminae and sheaths of mature laminae, and bases and laminae of young (growing) leaves. The second aim was to use pulse labelling with 14CO2 to follow the partitioning of recently-fixed assimilates, and the assembly and consumption of reserve sugars (fructans). Over the last 7 d of drought growth almost stopped, old leaves died faster than they were replaced, and total sugar (which had doubled in concentration during drought) was rapidly consumed. Leaf laminae had lower content of total sugars and of large fructan (DP>5) than did growing bases and sheaths. Drought greatly reduced the rate at which sugar was exported from the laminae to the sheaths and growing leaf bases, and the rate at which it was converted to fructan. Nevertheless, fructan accumulated over the first 50 d of drought. Rewatering did not result in depolymerization and remobilization of sugars that had been formed during the last 7 d of drought, but stimulated their further assembly into high-DP fructans. Our hypothesis, that accumulation of neo-kestose (a DP-3 fructan) in droughted laminae was a symptom of sugar remobilization just before death, was disproved. It is concluded that sugar reserves contribute to drought resistance only under extreme conditions. The specific role of fructan in dry environments might be to improve regrowth when drought is relieved, rather than to enhance growth during drought.  相似文献   

15.
16.
17.
You F  Zhou L  Liu X  Fan J  Ke Z  Ren W 《Gene》2012,498(2):196-202
A proliferation-inducing ligand (APRIL) is a novel member of the tumor necrosis factor (TNF) superfamily, which is involved in immune regulation. In the present study, the full-length cDNA of APRIL (designated bAPRIL) from bat was cloned using RT-PCR and its biological activities have been characterized. The open reading frame (ORF) of this cDNA consists of 753 bases, encoding a protein of 250 amino acids. This protein was found to contain a predicted transmembrane domain, a putative furin protease cleavage site, and a typical TNF homology domain corresponding to other, known APRIL homologs. Real-time quantitative PCR (qPCR) analysis indicated that bAPRIL mRNA was predominantly expressed in bat lymphoid tissue spleen. The SUMO-bsAPRIL was efficiently expressed in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western blot analysis. Laser scanning confocal microscopy analysis showed that bsAPRIL could bind to its receptors on B cells. In vitro, MTT assays indicated that bsAPRIL could promote the survival/proliferation of mouse splenic B cells grown with anti-mouse IgM. These findings indicate that bsAPRIL plays an important role in the survival and proliferation of B cells and has functional cross-reactivity among mammalians. The present findings may provide valuable information for research into the immune system of the bat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号