首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The backbone dynamics of Y14F mutant of Delta(5)-3-ketosteroid isomerase (KSI) from Comamonas testosteroni has been studied in free enzyme and its complex with a steroid analogue, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N NMR relaxation measurements. Model-free analysis of the relaxation data showed that the single-point mutation induced a substantial decrease in the order parameters (S(2)) in free Y14F KSI, indicating that the backbone structures of Y14F KSI became significantly mobile by mutation, while the chemical shift analysis indicated that the structural perturbations of Y14F KSI were more profound than those of wild-type (WT) KSI upon 19-NTHS binding. In the 19-NTHS complexed Y14F KSI, however, the key active site residues including Tyr14, Asp38 and Asp99 or the regions around them remained flexible with significantly reduced S(2) values, whereas the S(2) values for many of the residues in Y14F KSI became even greater than those of WT KSI upon 19-NTHS binding. The results thus suggest that the hydrogen bond network in the active site might be disrupted by the Y14F mutation, resulting in a loss of the direct interactions between the catalytic residues and 19-NTHS.  相似文献   

2.
The internal motions of the backbone nitrogen atoms of the kringle 1 domain of human plasminogen (K1(Pg)) were examined in the absence and presence of the ligand, epsilon-aminocaproic acid. These dynamic properties were determined from (15)N NMR relaxation data in terms of the extended model-free parameters. The model of isotropic reorientation was found sufficient to account for overall molecular tumbling for both apo and EACA-bound K1(Pg). The global rotational correlation time (tau(m)) for apo-K1(Pg) was 5.87(+/-0.01) ns, while the tau(m) for ligand-bound K1(Pg) was 5.20(+/-0.01) ns, suggesting that perhaps some small degree of aggregation occurred in the apo form of the kringle module. Complexation of K1(Pg) with ligand mainly reduced those internal motions that occurred on a 100 ps to 5 ns time-scale. The magnitude of the chemical exchange was also attenuated upon ligand binding. These data are consistent with studies employing other approaches that suggest that the binding pocket is preformed in K1(Pg).  相似文献   

3.
Backbone dynamics of uniformly (15)N-labeled barstar have been studied at 32 degrees C, pH 6.7, by using (15)N relaxation data obtained from proton-detected 2D (1)H-(15)N NMR spectroscopy. (15)N spin-lattice relaxation rate constants (R(1)), spin-spin relaxation rate constants (R(2)), and steady-state heteronuclear (1)H-(15)N NOEs have been determined for 69 of the 86 (excluding two prolines and the N-terminal residue) backbone amide (15)N at a magnetic field strength of 14.1 Tesla. The primary relaxation data have been analyzed by using the model-free formalism of molecular dynamics, using both isotropic and axially symmetric diffusion of the molecule, to determine the overall rotational correlation time (tau(m)), the generalized order parameter (S(2)), the effective correlation time for internal motions (tau(e)), and NH exchange broadening contributions (R(ex)) for each residue. As per the axially symmetric diffusion, the ratio of diffusion rates about the unique and perpendicular axes (D( parallel)/D( perpendicular)) is 0.82 +/- 0.03. The two results have only marginal differences. The relaxation data have also been used to map reduced spectral densities for the NH vectors of these residues at three frequencies: 0, omega(H), and omega(N), where omega(H),(N) are proton and nitrogen Larmor frequencies. The value of tau(m) obtained from model-free analysis of the relaxation data is 5.2 ns. The reduced spectral density analysis, however, yields a value of 5.7 ns. The tau(m) determined here is different from that calculated previously from time-resolved fluorescence data (4.1 ns). The order parameter ranges from 0.68 to 0.98, with an average value of 0.85 +/- 0.02. A comparison of the order parameters with the X-ray B-factors for the backbone nitrogens of wild-type barstar does not show any considerable correlation. Model-free analysis of the relaxation data for seven residues required the inclusion of an exchange broadening term, the magnitude of which ranges from 2 to 9.1 s(-1), indicating the presence of conformational averaging motions only for a small subset of residues.  相似文献   

4.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

5.
15N NMR relaxation data have been used to characterize the backbone dynamics of the human acidic fibroblast growth factor (hFGF-1) in its free and sucrose octasulfate (SOS)-bound states. (15)N longitudinal (R(1)), transverse (R(2)) relaxation rates and (1H)-(15)N steady-state nuclear Overhauser effects were obtained at 500 and 600 MHz (at 25 degrees C) for all resolved backbone amide groups using (1)H- detected two-dimensional NMR experiments. Relaxation data were fit to the extended model free dynamics for each NH group. The overall correlation time (tau(m)) for the free and SOS-bound forms were estimated to be 10.4 +/- 1.07 and 11.1 +/- 1.35 ns, respectively. Titration experiments with SOS reveals that the ligand binds specifically to the C-terminal domain of the protein in a 1:1 ratio. Binding of SOS to hFGF-1 is found to induce a subtle conformational change in the protein. Significant conformational exchange (R(ex)) is observed for several residues in the free form of the protein. However, in the SOS-bound form only three residues exhibit significant R(ex) values, suggesting that the dynamics on the micro- to millisecond time scale in the free form is coupled to the cis-trans-proline isomerization. hFGF-1 is a rigid molecule with an average generalized parameter (S(2)) value of 0.89 +/- 0.03. Upon binding to SOS, there is a marked decrease in the overall flexibility (S(2) = 0.94 +/- 0.02) of the hFGF-1 molecule. However, the segment comprising residues 103-111 shows increased flexibility in the presence of SOS. Significant correlation is found between residues that show high flexibility and the putative receptor binding sites on the protein.  相似文献   

6.
7.
Binding of the product inhibitor p-nitrophenol to the monoclonal esterolytic antibody NPN43C9 has been investigated by performing NMR spectroscopy of the heterodimeric variable-domain fragment (Fv) of the antibody in the presence and absence of inhibitor. Structural information from changes in chemical shift upon binding has been related to the changes in local dynamics in the active site of the catalytic antibody using NMR relaxation measurements. Significant changes in the chemical shifts of the backbone resonances upon binding extend beyond the immediate vicinity of the antigen binding site into the interface between the two associated polypeptides that form the Fv heterodimer, a possible indication that the binding of ligand causes a change in the relative orientations of the component light (V(L)) and heavy (V(H)) chain polypeptides. Significant differences in backbone dynamics were observed between the free Fv and the complex with p-nitrophenol. A number of resonances, including almost all of the third hypervariable loop of the light chain (L3), were greatly broadened in the free form of the protein. Other residues in the antigen-binding site showed less broadening of resonances, but still required exchange terms (R(ex)) in the model-free dynamics analysis, consistent with motion on a slow timescale in the active site region of the free Fv. Binding of p-nitrophenol caused these resonances to sharpen, but some R(ex) terms are still required in the analysis of the backbone dynamics. We conclude that the slow timescale motions in the antigen-binding site are very different in the bound and free forms of the Fv, presumably due to the damping of large-amplitude motions by the bound inhibitor.  相似文献   

8.
In the equilibrium unfolding process of Delta(5)-3-ketosteroid isomerase from Pseudomonas testosteroni by urea, it was observed that the enzyme stability increases by 2.5 kcal/mol in the presence of 5% trifluoroethanol (TFE). To elucidate the increased enzyme stability by TFE, the backbone dynamics of Delta(5)-3-ketosteroid isomerase were studied in the presence and absence of 5% TFE by (15)N NMR relaxation measurements, and the motional parameters (S(2), tau(e), and R(ex)) were extracted from the relaxation data using the model-free formalism. The presence of 5% TFE causes little change or a slight increase in the order parameters (S(2)) for a number of residues, which are located mainly in the dimer interface region. However, the majority of the residues exhibit reduced order parameters in the presence of 5% TFE, indicating that high frequency (pico- to nanosecond) motions are generally enhanced by TFE. The results suggest that the entropy can be an important factor for the enzyme stability, and the increase in entropy by TFE is partially responsible for the increased stability of Delta(5)-3-ketosteroid isomerase.  相似文献   

9.
The extent of rapid (picosecond) backbone motions within the glucocorticoid receptor DNA-binding domain (GR DBD) has been investigated using proton-detected heteronuclear NMR spectroscopy on uniformly 15N-labeled protein fragments containing the GR DBD. Sequence-specific 15N resonance assignments, based on two- and three-dimensional heteronuclear NMR spectra, are reported for 65 of 69 backbone amides within the segment C440-A509 of the rat GR in a protein fragment containing a total of 82 residues (MW = 9200). Individual backbone 15N spin-lattice relaxation times (T1), rotating-frame spin-lattice relaxation times (T1 rho), and steady-state (1H)-15N nuclear Overhauser effects (NOEs) have been measured at 11.74 T for a majority of the backbone amide nitrogens within the segment C440-N506. T1 relaxation times and NOEs are interpreted in terms of a generalized order parameter (S2) and an effective correlation time (tau e) characterizing internal motions in each backbone amide using an optimized value for the correlation time for isotropic rotational motions of the protein (tau R = 6.3 ns). Average S2 order parameters are found to be similar (approximately 0.86 +/- 0.07) for various functional domains of the DBD. Qualitative inspection as well as quantitative analysis of the relaxation and NOE data suggests that the picosecond flexibility of the DBD backbone is limited and uniform over the entire protein, with the possible exception of residues S448-H451 of the first zinc domain and a few residues for which relaxation and NOE parameters were not obtained. in particular, we find no evidence for extensive rapid backbone motions within the second zinc domain. Our results therefore suggest that the second zinc domain is not disordered in the uncomplexed state of DBD, although the possibility of slowly exchanging (ordered) conformational states cannot be excluded in the present analysis.  相似文献   

10.
Yushmanov VE  Mandal PK  Liu Z  Tang P  Xu Y 《Biochemistry》2003,42(13):3989-3995
The structure and backbone dynamics of an extended second transmembrane segment (TM2e) of the human neuronal glycine receptor alpha(1) subunit in sodium dodecyl sulfate micelles were studied by (1)H and (15)N solution-state NMR. The 28-amino acid segment contained the consensus TM2 domain plus part of the linker between the second and third transmembrane domains. The presence of a well-structured helical region of at least 13 amino acids long and an unstructured region near the linker was evident from the proton chemical shifts and the pattern of midrange nuclear Overhauser effects (NOE). (15)N relaxation rate constants, R(1) and R(2), and (15)N-[(1)H] NOE indicated restricted internal motions in the helical region with NOE values between 0.6 and 0.8. The squared order parameter (S(2)), the effective correlation time for fast internal motions (tau(e)), and the global rotational correlation time (tau(m)) were calculated for all TM2e backbone N-H bonds using the model-free approach. The S(2) values ranged about 0.75-0.86, and the tau(e) values were below 100 ps for most of the residues in the helical region. The tau(m) value, calculated from the dynamics of the helical region, was 5.1 ns. The S(2) values decreased to 0.1, and the tau(e) values sharply increased up to 1.2 ns at the linker near the C-terminus, indicating that the motion of this region is unrestricted. The results suggest a relatively high degree of motional freedom of TM2e in micelles and different propensities of the N- and C-terminal moieties of the transmembrane domain to assume stable helical structures.  相似文献   

11.
Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40°C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (m) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.  相似文献   

12.
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.  相似文献   

13.
Kovrigin EL  Cole R  Loria JP 《Biochemistry》2003,42(18):5279-5291
The interaction of the dinucleotide inhibitor 5'-phosphothymidine(3',5')pyrophosphate adenosine 3'-phosphate (pTppAp) with bovine pancreatic ribonuclease A (RNase A) was characterized by calorimetry and solution NMR spectroscopy. Calorimetric data show that binding of pTppAp to RNase A is exothermic (DeltaH = -60.1 +/- 4.1 kJ/mol) with a dissociation constant of 16 nM at 298 K. At this temperature, the binding results in an entropy loss (TDeltaS = -16.8 +/- 7.3 kJ/mol) that is more favorable than that with the product analogue, 2'-CMP (TDeltaS = -31.3 +/- 0.9 kJ/mol). Temperature-dependent calorimetric experiments give a DeltaC(p) for ligand binding of -230 +/- 100 J/mol K. Binding of pTppAp results in noticeable effects on the backbone amide chemical shifts and dynamics. Amide backbone (15)N NMR spin-relaxation studies were performed on both apo RNase A and RNase A/pTppAp as a function of temperature. At each temperature, the model-free-determined order parameters, S(2), were significantly higher for RNase A/pTppAp than for the apo enzyme indicating a decrease in the conformational entropy of the protein upon ligand binding. Furthermore, the magnitude of this difference varies along the amino acid sequence specifically locating the entropic changes. The temperature dependence of S(2) at each residue enabled assessment of the local heat capacity changes (DeltaC(p)) from ligand binding. In an overall, average sense, DeltaC(p) for the protein backbone, determined from the NMR dynamics measurements, did not differ between apo RNase A and RNase A/pTppAp indicating that backbone dynamics contribute little to DeltaC(p) for protein-ligand interactions in this system. However, residue-by-residue comparison of the temperature-dependent change in entropy (DeltaS(B)) between free and bound forms reveals nonzero contributions to DeltaC(p) at individual sites. The balance of positive and negative changes reveals a redistribution of energetics upon binding. Furthermore, experiment and semiempirical estimates suggest that a large negative DeltaC(p) should accompany binding of pTppAp, and we conclude that this contribution must arise from factors other than amide backbone dynamics.  相似文献   

14.
Zhu L  Hu J  Lin D  Whitson R  Itakura K  Chen Y 《Biochemistry》2001,40(31):9142-9150
Mrf-2 is a member of a new class of DNA-binding proteins known as the AT-rich interaction domain family or ARID. Chemical shift indices and characteristic NOE values indicate that the three-dimensional structure of the Mrf-2 ARID in complex with DNA is nearly identical to that of the free protein. The backbone dynamics of the Mrf-2 domain free and in complex with DNA have been characterized by (15)N NMR relaxation measurements and model-free analysis. Chemical shift perturbations and dynamic studies suggest that two flexible interhelical loops, the flexible C-terminal tail, and one alpha-helix are involved in DNA recognition, indicating the importance of protein dynamics in DNA binding. Some well-structured regions, in particular the putative DNA-contacting helix, in Mrf-2 show a decrease in the order parameters (S(2)) upon complex formation. The less well-structured loops and the unstructured C-terminus show reduced flexibility upon DNA binding. In addition, the model-free analysis indicates motions on the picosecond to nanosecond and micro- to millisecond time scales at the DNA-binding surface of the bound Mrf-2 ARID, suggesting a model where interactions between the protein and DNA are highly dynamic.  相似文献   

15.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

16.
Savard PY  Gagné SM 《Biochemistry》2006,45(38):11414-11424
Backbone dynamics of TEM-1 beta-lactamase (263 amino acids, 28.9 kDa) were studied by 15N nuclear magnetic resonance relaxation at 11.7, 14.1, and 18.8 T. The high quality of the spectra allowed us to measure the longitudinal relaxation rate (R1), the transverse relaxation rate (R2), and the {1H}-15N NOE for up to 227 of the 250 potentially observable backbone amide groups. The model-free formalism was used to determine internal motional parameters using an axially anisotropic model. TEM-1 exhibits a small prolate axial anisotropy (D(parallel)/D(perpendicular) = 1.23 +/- 0.01) and a global correlation time (tau(m)) of 12.41 +/- 0.01 ns. The unusually high average generalized order parameter (S2) of 0.90 +/- 0.02 indicates that TEM-1 is one of the most ordered proteins studied by liquid-state NMR to date. Although the omega-loop has a high degree of order in the picosecond-to-nanosecond time scale (mean S2 value of 0.90 +/- 0.02), we observed the presence of microsecond-to-millisecond time scale motions for this loop, as for the vicinity of the active site. These motions could be relevant for the catalytic function of TEM-1. Amide exchange experiments were also performed, and several amide groups were not exchanged after 12 days, an indication that global motions in TEM-1 are also very limited. Although detailed dynamics characterization by NMR cannot be readily applied to TEM-1 in the presence of relevant substrates, the unusual picosecond-to-nanosecond dynamics behavior of TEM-1 presented here will be essential to the validation and improvement of future molecular dynamics simulations of TEM-1 in the presence of functionally relevant substrates.  相似文献   

17.
The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. 15N T1, T2, and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of approximately less than 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 +/- 0.05. For a model comprising free diffusion within a cone, these residue-specific order parameters translate to an average cone semiangle of 20.7 +/- 3.3 degrees. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). These additional motions must be invoked to account for the discrepancy between experiment and the simplest theoretical formulation in which the internal motions are described by only two parameters, a generalized order parameter and an effective correlation time [Lipari, G., & Szabo, A. (1982a) J. Am. Chem. Soc. 104, 4546-4559]. In particular, while the simple formulation can account for the 15N T1 and T2 data, it fails to account for the 15N-1H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. With the introduction of two internal motions that are faster than the rotational correlation time and differ in time scales by at least 1-2 orders of magnitude [Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., & Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989-4991], all the relaxation data for these 32 residues can be fitted by two order parameters and an effective correlation time for the slower of the two internal motions. A simple model for these two motions is one in which the very fast motion involves axially symmetric diffusion within a cone, while the slower motion comprises jumps between two different orientations of the NH vector. For such a model the jump angle (excluding the C-terminal residue) ranges from 15 degrees to 69 degrees with a mean value of 28.6 +/- 14.0 degrees. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in 15N line broadening due to chemical exchange between different conformational substates with distinct 15N chemical shifts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To elucidate the influence of local motion of the polypeptide chain on the catalytic mechanism of an enzyme, we have measured (15)N relaxation data for Escherichia coli dihydrofolate reductase in three different complexes, representing different stages in the catalytic cycle of the enzyme. NMR relaxation data were analyzed by the model-free approach, corrected for rotational anisotropy, to provide insights into the backbone dynamics. There are significant differences in the backbone dynamics in the different complexes. Complexes in which the cofactor binding site is occluded by the Met20 loop display large amplitude motions on the picosecond/nanosecond time scale for residues in the Met20 loop, the adjacent betaF-betaG loop and for residues 67-69 in the adenosine binding loop. Formation of the closed Met20 loop conformation in the ternary complex with folate and NADP(+), results in attenuation of the motions in the Met20 loop and the betaF-betaG loop but leads to increased flexibility in the adenosine binding loop. New fluctuations on a microsecond/millisecond time scale are observed in the closed E:folate:NADP(+) complex in regions that form hydrogen bonds between the Met20 and the betaF-betaG loops. The data provide insights into the changes in backbone dynamics during the catalytic cycle and point to an important role of the Met20 and betaF-betaG loops in controlling access to the active site. The high flexibility of these loops in the occluded conformation is expected to promote tetrahydrofolate-assisted product release and facilitate binding of the nicotinamide ring to form the Michaelis complex. The backbone fluctuations in the Met20 loop become attenuated once it closes over the active site, thereby stabilizing the nicotinamide ring in a geometry conducive to hydride transfer. Finally, the relaxation data provide evidence for long-range motional coupling between the adenosine binding loop and distant regions of the protein.  相似文献   

19.
A significant determinant for the broad substrate specificity of the metallo-beta-lactamases from Bacteroides fragilis and other similar organisms is the presence of a plastic substrate binding site that is nevertheless capable of tight substrate binding in the Michaelis complex. To achieve these two competing ends, the molecule apparently employs a flexible flap that closes over the active site in the presence of substrate. These characteristics imply that dynamic changes are an important component of the mechanism of action of these enzymes. The backbone and tryptophan side chain dynamics of the metallo-beta-lactamase from B. fragilis have been examined using (15)N NMR relaxation measurements. Two states of the protein were examined, in the presence and absence of a tight-binding inhibitor. Relaxation measurements were analyzed by the model-free method. Overall, the metallo-beta-lactamase molecule is rigid and shows little flexibility except in loops. The flexibility of the loop that covers the active site is not unusually great as compared to the other loops of the protein. Local motion on a picosecond time scale was found to be very similar throughout the protein in the presence and absence of the inhibitor, but a significant difference was observed in the motions on a nanosecond time scale (tau(e)). Large-amplitude motions with a time constant of about 1.3 ns were observed for the flexible flap region (residues 45-55) in the absence of the inhibitor. These motions were completely damped out in the presence of the inhibitor. In addition, the motion of a tryptophan side chain at the tip of the beta-hairpin of the flap shows a very significant difference in motion on the ps time scale. These results indicate that the motions of the polypeptide chain in the flap region can be invoked to explain both the wide substrate specificity (the free form has considerable amplitude of motion in this region) and the catalytic efficiency of the metallo-beta-lactamase (the motions are damped out when the inhibitor and by implication a substrate binds in the active site).  相似文献   

20.
The backbone dynamics of uniformly 15N-labeled reduced and oxidized putidaredoxin (Pdx) have been studied by 2D 15N NMR relaxation measurements. 15N T1 and T2 values and 1H-15N NOEs have been measured for the diamagnetic region of the protein. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameters (S2), the effective correlation time for internal motions (tau e), and the 15N exchange broadening contributions (Rex) for each residue, as well as the overall correlation time (tau(m)). Order parameters for the reduced Pdx are generally higher than for the oxidized Pdx, and there is increased mobility on the microsecond to millisecond time scale for the oxidized Pdx, in comparison with the reduced Pdx. These results clearly indicate that the oxidized protein exhibits higher mobility than the reduced one, which is in agreement with the recently published redox-dependent dynamics studied by amide proton exchange. In addition, we observed very high T1/T2 ratios for residues 33 and 34, giving rise to a large Rex contribution. Residue 34 is believed to be involved in the binding of Pdx to cytochrome P450cam (CYP101). The differences in the backbone dynamics are discussed in relation to the oxidation states of Pdx, and their impact on electron transfer. The entropy change occurring on oxidation of reduced Pdx has been calculated from the order parameters of the two forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号