首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido[alpha-32P]adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled [Dalbon, P., Boulay, F., & Vignais, P. V. (1985) FEBS Lett. 180, 212-218]. The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.  相似文献   

2.
P Dalbon  F Boulay  P V Vignais 《FEBS letters》1985,180(2):212-218
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[alpha-32P]ADP in the dark with a Kd value of congruent to 8 microM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[alpha-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[alpha-32P]ADP, both the ADP/ATP carrier and the beta subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[alpha-32P]ADP for the beta subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

3.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

4.
J P Issartel  P V Vignais 《Biochemistry》1984,23(26):6591-6595
The nucleotide binding capacity and affinity of the isolated beta subunit from Escherichia coli F1-ATPase have been studied with radiolabeled ADP and ATP by an equilibrium dialysis technique. Each mole of beta subunit in the presence of EDTA bound 1 mol of ADP or ATP with Kd values of 25 microM and 50-100 microM, respectively. At a saturating concentration, aurovertin enhanced the affinity of ADP or ATP for the isolated beta subunit by 3-6-fold. The Kd values for the binding of ADP or ATP were also assessed through the enhancing effect of ADP on [14C]aurovertin binding (Issartel, J.-P., Klein, G., Satre, M., & Vignais, P.V. (1983) Biochemistry 22, 3485-3492); the Kd values determined by this approach were several times lower than in the absence of aurovertin, in agreement with results obtained by direct titration with radiolabeled ADP or ATP.  相似文献   

5.
2-Azido[alpha-32P]adenosine diphosphate (2-azido[alpha-32P]ADP) has been used to photolabel the ADP/ATP carrier in beef heart mitochondria. In reversible binding assays carried out in the dark, this photoprobe was found to inhibit ADP/ATP transport in beef heart mitochondria and to bind to two types of specific sites of the ADP/ATP carrier characterized by high-affinity binding (Kd = 20 microM) and low-affinity binding (Kd = 400 microM). In contrast, it was unable to bind to specific carrier sites in inverted submitochondrial particles. Upon photoirradiation of beef heart mitochondria in the presence of 2-azido[alpha-32P]ADP, the ADP/ATP carrier was covalently labeled. After purification, the photolabeled carrier protein was cleaved chemically by acidolysis or cyanogen bromide and enzymatically with the Staphylococcus aureus V8 protease. In the ADP/ATP carrier protein, which is 297 amino acid residues in length, two discrete regions extending from Phe-153 to Met-200 and from Tyr-250 to Met-281 were labeled by 2-azido[alpha-32P]ADP. The peptide fragments corresponding to these regions were sequenced, and the labeled amino acids were identified. As 2-azido-ADP is not transported into mitochondria and competes against transport of externally added ADP, it is concluded that the two regions of the carrier which are photolabeled are facing the cytosol. Whether the two photolabeled regions are located in a single peptide chain of the carrier or in different peptide chains of an oligomeric structure is discussed.  相似文献   

6.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The bovine heart mitochondrial F1-ATPase (MF1) is inactivated by 5'-p'-fluorosulfonylbenzoyl-8-azidoadenosine (8-N3-FSBA) with an apparent Kd of 0.47 mM at pH 8.0 and 23 degrees C in the absence of light. Irradiation of dark-inactivated enzyme with long-wavelength UV light produced cross-linked dimers and, to a lesser extent, trimers made up of alpha and beta subunits. Two major radioactive peptides were resolved by high-performance liquid chromatography from tryptic digests of MF1 which had been inactivated with 8-N3-FSB[3H]A at pH 8.0 in the dark. Sequence analysis revealed that one contained Tyr-beta 368 and the other contained His-beta 427 which were labeled in the ratio of 18:15. Sequence analysis of radioactive tryptic peptides isolated from digests of irradiated MF1 derivatized with 8-N3-FSB[3H]A showed that photolysis induced cross-linking of His-427 to Tyr-345 within the same beta subunit in high yield. When MF1 derivatized with 8-N3-FSB[3H]A was irradiated in the presence of beta-mercaptoethanol, alpha-beta cross-links were eliminated, whereas those between His-beta 427 and Tyr-beta 345 were unaffected. Analysis of radioactive peptides in tryptic digests of MF1 derivatized with 8-N3-FSB[3H]A and then irradiated in the presence or absence of beta-mercaptoethanol showed that the nitrene generated from reagent attached to Tyr-beta 368 participates in formation of alpha-beta cross-links in the absence of beta-mercaptoethanol. Therefore, the nitrene generated from reagent tethered to His-beta 427 is shielded from solvent and reacts with the side chain of Tyr-beta 345. In contrast, the nitrene generated from reagent attached to Tyr-beta 368 is exposed to solvent, but in the absence of scavengers reacts with side chains present in the alpha subunit. Irradiation of MF1, partially inactivated with 8-N3-FSBA, led to loss of residual ATPase activity without affecting residual ITPase activity. The amount of photoinactivation was greater when partial dark inactivation was performed at pH 6.9, where modification of His-beta 427 predominates, than when performed at pH 8.0, where modification of Tyr-beta 368 predominates. This suggests that cross-linking of His-beta 427 to Tyr-beta 345, and not cross-linking of alpha and beta subunits, is responsible for the augmented inactivation induced by irradiation.  相似文献   

8.
Methods are described to classify nucleotide binding sites of the mitochondrial coupling factor F1 from yeast on the basis of their affinities and stability properties. High affinity sites or states for ATP and related adenine analogs and low affinity sites or states which bind a broad range of different nucleotide triphosphates are found. The results are discussed in terms of a two site, two cycle scheme, where binding of nucleotide at one site facilitates the release of nucleotide at a second site.  相似文献   

9.
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[α-32P]ADP in the dark with a Kd value of 8 μM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[α-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[α-32P]ADP, both the ADP/ATP carrier and the β subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[α-32P]ADP for the β subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

10.
Previously we have shown that beef heart mitochondrial F1 contains a total of six adenine nucleotide binding sites. Three "catalytic" sites exchange bound ligand rapidly during hydrolysis of MgATP, whereas three "noncatalytic" sites do not. The noncatalytic sites behave asymmetrically in that a single site releases bound ligand upon precipitation of F1 with ammonium sulfate. In the present study, we find this same site to be the only noncatalytic site that undergoes rapid exchange of bound ligand when F1 is incubated in the presence of EDTA at pH 8.0. Following 1000 catalytic turnovers/F1, the site retains the unique capacity for EDTA-induced exchange, indicating that the asymmetric determinants are permanent and that the three noncatalytic sites on soluble F1 do not pass through equivalent states during catalysis. Measurements of the rate of ligand binding at the unique noncatalytic site show that uncomplexed nucleotide binds preferentially. At pH 7.5, in the presence of Mg2+, the rate constant for ADP binding is 9 X 10(3) M-1 s-1 and for dissociation is 4 X 10(-4) s-1 to give a Kd = 50 nM. The rate of dissociation is 10 times faster in the presence of EDTA or during MgATP hydrolysis, and it increases rapidly at pH below 7. EDTA-induced exchange is inhibited by Mg2+, Mn2+, Co2+, and Zn2+ but not by Ca2+ and is unaffected by dicyclohexylcarbodiimide modification. The unique noncatalytic site binds 2-azido-ADP. Photolysis results in the labeling of the beta subunit. Photolabeling of a single high-affinity catalytic site under conditions for uni-site catalysis also results in the labeling of beta, but a different pattern of labeled peptides is obtained in proteolytic digests. The results demonstrate the presence of two different nucleotide binding domains on the beta subunit of mitochondrial F1.  相似文献   

11.
Interactions between the high affinity binding sites on mitochondrial F1 were analysed by combined use of the nucleotide analogues 3'-O-(1-naphthoyl)-ADP (N-ADP) and 2'-3'-O-(2,4,6-trinitrophenyl)-ADP (TNP-ADP). The binding behaviour of F1 with respect to these ligands was studied by measuring the fluorescence of F1 and of TNP-ADP and the fluorescence anisotropy of N-ADP. A total of 3 high affinity binding sites can be occupied by TNP-ADP. By exchange experiments, it could be shown that binding of TNP-ADP to such a site considerably accelerates the dissociation of a ligand bound to a neighbouring site. These results support the notion that the functional behaviour of F1 is symmetric: during the catalytic cycle any individual site can successively assume different affinity states as has been predicted by hypotheses such as the binding change model.  相似文献   

12.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

13.
The conformation of adenine nucleotides bound to bovine mitochondrial F1-ATPase was investigated using transfer nuclear Overhauser enhancement measurements. It is shown that all nucleotides investigated adopt a predominantly anti conformation when bound to the catalytic sites. Furthermore, the experiment suggests that 8-azido-ADP and 8-azido-ATP, which are predominantly in the syn conformation in solution, are in the anti conformation when bound to F1 catalytic sites.  相似文献   

14.
Beef heart mitochondrial F1 possesses three pyrophosphate-binding sites, which comprises one high affinity binding site (Kd approximately equal to 1 microM) and two lower affinity sites (Kd approximately equal to 20 microM). High affinity pyrophosphate binding required the presence of Mg2+ in the incubation medium. Pyrophosphate competed with ADP, but not with Pi for binding to mitochondrial F1. Upon binding of 3 mol of pyrophosphate/mol of F1, one of the three tightly bound nucleotides present in native F1 was released. Like ADP and in contrast to Pi, pyrophosphate enhanced the fluorescence intensity of F1-bound aurovertin, and it prevented the photolabeling of F1 by 2-azido-ADP. As aurovertin and 2-azido-ADP are ligands of the beta subunit of F1, it is likely that pyrophosphate binds preferentially to the beta subunit. Whereas the binding affinity of F1 for Pi was increased by concentrations of pyrophosphate lower than 100 microM, it was decreased by a higher concentration of pyrophosphate. This biphasic effect of pyrophosphate on Pi binding was not observed with ADP, which, at all concentrations tested, inhibited Pi binding. Except for the effect of pyrophosphate on Pi binding to F1, for all the other effects, pyrophosphate mimicked ADP. It is suggested that pyrophosphate and ADP share the same binding site on F1 and that pyrophosphate interacts with the same amino acid residues as those interacting with the alpha and beta phosphate groups of ADP.  相似文献   

15.
A yeast nuclear pet mutant of Saccharomyces cerevisiae lacking any detectable mitochondrial F1-ATPase activity was genetically complemented upon transformation with a pool of wild type genomic DNA fragments carried in the yeast Escherchia coli shuttle vector YEp 13. Plasmid-dependent complementation restored both growth of the pet mutant on a nonfermentable carbon source as well as functional mitochondrial ATPase activity. Characterization of the complementing plasmid by plasmid deletion analysis indicated that the complementing gene was contained on adjoining BamH1 fragments with a combined length of 3.05 kilobases. Gel analysis of the product of this DNA by in vitro translation in a rabbit reticulocyte lysate programmed with yeast mRNA hybrid selected by the plasmid revealed a product which could be immunoprecipitated by antisera against the beta subunit of the yeast mitochondrial ATPase complex. A comparison of the protein sequence derived from partial DNA sequence analysis indicated that the beta subunit of the yeast mitochondrial ATPase complex exhibits greater than 70% conservation of protein sequence when compared to the same subunit from the ATPase of E. coli, beef heart, and chloroplast. The gene coding the beta subunit (subunit 2) of yeast mitochondrial adenosine triphosphatase is designated ATP2. The utilization of cloned nuclear structural genes of mitochondrial proteins for the analysis of the post-translational targeting and import events in organelle assembly is discussed.  相似文献   

16.
17.
The properties of the nucleotides tightly bound with mitochondrial F1-ATPase were examined. One of three bound nucleotide molecules is localized at the site with Kd approximately 10(-7) M and released with koff approximately 0.1 s-1. The second nucleotide molecule is bound with the enzyme with Kd approximately 10(-8) M and koff for its dissociation is 3 X 10(-4) s-1. The third is never released even in the presence of 1 mM ATP or ADP. The last two nucleotides are believed to be bound at the noncatalytic sites of F1-ATPase. Pyrophosphate promotes liberation of two releasable nucleotide molecules, decreasing the affinity of the enzyme to AD(T)P. From the results obtained it follows that the only suitable criterion for localization of the nucleotide at the F1-ATPase catalytic site is the high rate (koff greater than or equal to 0.1 s-1) of its spontaneous release.  相似文献   

18.
Photoaffinity labeling has been performed on pancreatic zymogen granule membranes using 8-azido-[alpha-32P]ATP (8-N3-ATP). Proteins of 92, 67, 53, and 35 kdaltons (kDa) were specifically labeled. ATP (100 microM) inhibited very strongly the labeling with 8-N3-ATP, while ADP was much less potent, AMP and cAMP being inefficient. The apparent constants for 8-N3-ATP binding were in the micromolar concentration range for the four labeled proteins. Without irradiation, 8-N3-ATP was a competitive inhibitor (Ki = 2.66 microM) for the hydrolysis of ATP by the ATP diphosphohydrolase. The optimal conditions for the photolabeling of the 92- and 53-kDa proteins were pH 6.0 in presence of divalent cations. On the other hand the 67- and 35-kDa proteins required an alkaline pH and the addition of EDTA in the photolabeling medium. No proteins could be labeled on intact zymogen granules, showing that all the high-affinity ATP-binding sites of the membrane were located at the interior of the granule. Both the 92- and 53-kDa glycoproteins could bind to concanavalin A-Sepharose and be extracted in the detergent phase in the Triton X-114 phase separation system. These latter properties are typical of integral membrane proteins. In addition, the 53-kDa labeled protein was sensitive to endo-beta-N-acetylglucosaminidase digestion. Photolabeling with 8-N3-ATP of two different preparations of purified ATP diphosphohydrolase also led to the labeling of a 53-kDa protein. Thus among the four proteins labeled with 8-N3-ATP on the pancreatic zymogen granule membrane, the 53-kDa integral membrane glycoprotein was shown to bear the catalytic site of the ATP diphosphohydrolase.  相似文献   

19.
[32P]Azidonitrophenyl phosphate [( 32P]ANPP) is a photoactivatable analogue of Pi. It competes efficiently with Pi for binding to the F1 sector of beef heart mitochondrial ATPase and photolabels the Pi binding site located in the beta subunit of F1 [Lauquin, G. J. M., Pougeois, R., & Vignais, P. V. (1980) Biochemistry 19, 4620-4626]. By cleavage of the photolabeled beta subunit of F1 with cyanogen bromide, trypsin, and chymotrypsin, bound [32P]ANPP was localized in a fragment spanning Thr 299-Phe 326. By Edman degradation of the radiolabeled tryptic peptide spanning Ile 296-Arg 337, [32P]ANPP was found to be attached covalently by its photoreactive group to Ile 304, Gln 308, and Tyr 311. These results are discussed in terms of a model in which the phosphate group of [32P]ANPP interacts with a glycine-rich sequence of the beta subunit, spanning Gly 156-Lys 162, which is spatially close to the photolabeled Ile 304-Tyr 311 segment of the same subunit.  相似文献   

20.
Incubation of the isolated H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ATP leads to the binding of this nucleotide to different sites. These sites were identified after removal of free nucleotides, UV-irradiation and trypsin treatment by separation of the tryptic peptides by ion exchange chromatography. The nitreno-AMP, nitreno-ADP and nitreno-ATP peptides were further separated on a reversed phase column, the main fractions were subjected to amino acid sequence analysis and the derivatized tyrosines were used to distinguish between catalytic (beta-Tyr362) and non-catalytic (beta-Tyr385) sites. Several incubation procedures were developed which allow a selective occupation of each of the three non-catalytic sites. The non-catalytic site with the highest dissociation constant (site 6) becomes half maximally filled at 50 microM 2-azido-[alpha-(32)P]ATP, that with the intermediate dissociation constant (site 5) at 2 microM. The ATP at the site with the lowest dissociation constant had to be hydrolyzed first to ADP before a replacement by 2-azido-[alpha-(32)P]ATP was possible. CF(0)F(1) with non-covalently bound 2-azido-[alpha-(32)P]ATP and after covalent derivatization was reconstituted into liposomes and the rates of ATP synthesis as well as ATP hydrolysis were measured after energization of the proteoliposomes by Delta pH/Delta phi. Non-covalent binding of 2-azido-ATP to any of the three non-catalytic sites does not influence ATP synthesis and ATP hydrolysis, whereas covalent derivatization of any of the three sites inhibits both, the degree being proportional to the degree of derivatization. Extrapolation to complete inhibition indicates that derivatization of one site (either 4 or 5 or 6) is sufficient to block completely multi-site catalysis. The rates of ATP synthesis and ATP hydrolysis were measured as a function of the ADP and ATP concentration from uni-site to multi-site conditions with covalently derivatized and non-derivatized CF(0)F(1). Uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent derivatization of any of the non-catalytic sites, whereas multi-site catalysis is inhibited. These results indicate that multi-site catalysis requires some flexibility between beta- and alpha-subunits which is abolished by covalent derivatization of beta-Tyr385 with a 2-nitreno-adenine nucleotide. Conformational changes connected with energy transduction between the F(0)-part and the F(1)-part are either not required for uni-site ATP synthesis or they are not impaired by the derivatization of any of the three beta-Tyr385.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号