首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The serine chemoreceptor of Escherichia coli contains four canonical methylation sites for sensory adaptation that lie near intersubunit helix interfaces of the Tsr homodimer. An unexplored fifth methylation site, E502, lies at an intrasubunit helix interface closest to the HAMP domain that controls input-output signaling in methyl-accepting chemotaxis proteins. We analyzed, with in vivo Förster resonance energy transfer (FRET) kinase assays, the serine thresholds and response cooperativities of Tsr receptors with different mutationally imposed modifications at sites 1 to 4 and/or at site 5. Tsr variants carrying E or Q at residue 502, in combination with unmodifiable D and N replacements at adaptation sites 1 to 4, underwent both methylation and demethylation/deamidation, although detection of the latter modifications required elevated intracellular levels of CheB. These Tsr variants could not mediate a chemotactic response to serine spatial gradients, demonstrating that adaptational modifications at E502 alone are not sufficient for Tsr function. Moreover, E502 is not critical for Tsr function, because only two amino acid replacements at this residue abrogated serine chemotaxis: Tsr-E502P had extreme kinase-off output and Tsr-E502I had extreme kinase-on output. These large threshold shifts are probably due to the unique HAMP-proximal location of methylation site 5. However, a methylation-mimicking glutamine at any Tsr modification site raised the serine response threshold, suggesting that all sites influence signaling by the same general mechanism, presumably through changes in packing stability of the methylation helix bundle. These findings are consistent with control of input-output signaling in Tsr through dynamic interplay of the structural stabilities of the HAMP and methylation bundles.  相似文献   

2.
HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2' helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2' helices, which may be the signal that is transmitted to the kinase control region of Aer.  相似文献   

3.
HAMP domains mediate input-output communication in many bacterial signalling proteins. To explore the dynamic bundle model of HAMP signalling (Zhou et al., Mol. Microbiol. 73: 801, 2009), we characterized the signal outputs of 118 HAMP missense mutants of the serine chemoreceptor, Tsr, by flagellar rotation patterns. Receptors with proline or charged amino acid replacements at critical hydrophobic packing residues in the AS1 and AS2 HAMP helices had locked kinase-off outputs, indicating that drastic destabilization of the Tsr-HAMP bundle prevents kinase activation, both in the absence and presence of the sensory adaptation enzymes, CheB and CheR. Attractant-mimic lesions that enhance the structural stability of the HAMP bundle also suppressed kinase activity, demonstrating that Tsr-HAMP has two kinase-off output states at opposite extremes of its stability range. HAMP mutants with locked-on kinase outputs appeared to have intermediate bundle stabilities, implying a biphasic relationship between HAMP stability and kinase activity. Some Tsr-HAMP mutant receptors exhibited reversed output responses to CheB and CheR action that are readily explained by a biphasic control logic. The findings of this study provide strong support for a three-state dynamic bundle model of HAMP signalling in Tsr, and possibly in other bacterial transducers as well.  相似文献   

4.
Bacterial chemoreceptors form ternary signaling complexes with the histidine kinase CheA through the coupling protein CheW. Receptor complexes in turn cluster into cellular arrays that produce highly sensitive responses to chemical stimuli. In Escherichia coli, receptors of different types form mixed trimer-of-dimers signaling teams through the tips of their highly conserved cytoplasmic domains. To explore the possibility that the hairpin loop at the tip of the trimer contact region might promote interactions with CheA or CheW, we constructed and characterized mutant receptors with amino acid replacements at the two nearly invariant hairpin charged residues of Tsr: R388, the most tip-proximal trimer contact residue, and E391, the apex residue of the hairpin turn. Mutant receptors were subjected to in vivo tests for the assembly and function of trimers, ternary complexes, and clusters. All R388 replacements impaired or destroyed Tsr function, apparently through changes in trimer stability or geometry. Large-residue replacements locked R388 mutant ternary complexes in the kinase-off (F, H) or kinase-on (W, Y) signaling state, suggesting that R388 contributes to signaling-related conformational changes in the trimer. In contrast, most E391 mutants retained function and all formed ternary signaling complexes efficiently. Hydrophobic replacements of any size (G, A, P, V, I, L, F, W) caused a novel phenotype in which the mutant receptors produced rapid switching between kinase-on and -off states, indicating that hairpin tip flexibility plays an important role in signal state transitions. These findings demonstrate that the receptor determinants for CheA and CheW binding probably lie outside the hairpin tip of the receptor signaling domain.  相似文献   

5.
HAMP domains are approximately 50-residue motifs, found in many bacterial signaling proteins, that consist of two amphiphilic helices joined by a nonhelical connector segment. The HAMP domain of Tsr, the serine chemoreceptor of Escherichia coli, receives transmembrane input signals from the periplasmic serine binding domain and in turn modulates output signals from the Tsr kinase control domain to elicit chemotactic responses. We created random amino acid replacements at each of the 14 connector residues of Tsr-HAMP to identify those that are critical for Tsr function. In all, we surveyed 179 connector missense mutants and identified three critical residues (G235, L237, and I241) at which most replacements destroyed Tsr function and another important residue (G245) at which most replacements impaired Tsr function. The region surrounding G245 tolerated 1-residue deletions and insertions of up to 10 glycines, suggesting a role as a relatively nonspecific, flexible linker. The critical connector residues are consistent with a structural model of the Tsr-HAMP domain based on the solution structure of an isolated thermophile HAMP domain (M. Hulko, F. Berndt, M. Gruber, J. U. Linder, V. Truffault, A. Schultz, J. Martin, J. E. Schultz, A. N. Lupas, and M. Coles, Cell 126:929-940, 2006) in which G235 defines a critical turn at the C terminus of the first helix and L237 and I241 pack against the helices, perhaps to stabilize alternative HAMP signaling conformations. Most I241 lesions locked Tsr signal output in the kinase-on mode, implying that this residue is responsible mainly for stabilizing the kinase-off signaling state. In contrast, lesions at L237 resulted in a variety of aberrant output patterns, suggesting a role in toggling output between signaling states.  相似文献   

6.
To test the gearbox model of HAMP signalling in the Escherichia coli serine receptor, Tsr, we generated a series of amino acid replacements at each residue of the AS1 and AS2 helices. The residues most critical for Tsr function defined hydrophobic packing faces consistent with a four-helix bundle. Suppression patterns of helix lesions conformed to the predicted packing layers in the bundle. Although the properties and patterns of most AS1 and AS2 lesions were consistent with both proposed gearbox structures, some mutational features specifically indicate the functional importance of an x-da bundle over an alternative a-d bundle. These genetic data suggest that HAMP signalling could simply involve changes in the stability of its x-da bundle. We propose that Tsr HAMP controls output signals by modulating destabilizing phase clashes between the AS2 helices and the adjoining kinase control helices. Our model further proposes that chemoeffectors regulate HAMP bundle stability through a control cable connection between the transmembrane segments and AS1 helices. Attractant stimuli, which cause inward piston displacements in chemoreceptors, should reduce cable tension, thereby stabilizing the HAMP bundle. This study shows how transmembrane signalling and HAMP input–output control could occur without the helix rotations central to the gearbox model.  相似文献   

7.
HAMP domains communicate between input and output signalling modules in a wide variety of bacterial sensor proteins. In the Tsr chemoreceptor, they convert a signal initiated by binding of serine to the periplasmic domain of the protein into regulation of receptor control of the CheA kinase, and ultimately of the direction of flagellar rotation. In this issue, Zhou et al. report an extensive mutational analysis of the Tsr HAMP domain that shows that it can assume a number of different signalling states, which presumably correspond to a variety of different conformations. The two conformational extremes of a tightly packed and a loosely packed HAMP four‐helix bundle support only low levels of CheA activity. Thus, Tsr HAMP does not function as a simple on‐off, two‐state device but rather as a dynamic structure with biphasic control. The normal physiological operating range of Tsr is proposed to be at intermediate degrees of packing of the HAMP four‐helix bundle, but HAMP domains in other proteins could occupy different portions of the conformational spectrum.  相似文献   

8.
HAMP domains mediate input–output transactions in many bacterial signalling proteins. To clarify the mechanistic logic of HAMP signalling, we constructed Tsr‐HAMP deletion derivatives and characterized their steady‐state signal outputs and sensory adaptation properties with flagellar rotation and receptor methylation assays. Tsr molecules lacking the entire HAMP domain or just the HAMP‐AS2 helix generated clockwise output signals, confirming that kinase activation is the default output state of the chemoreceptor signalling domain and that attractant stimuli shift HAMP to an overriding kinase‐off signalling state to elicit counter‐clockwise flagellar responses. Receptors with deletions of the AS1 helices, which free the AS2 helices from bundle‐packing constraints, exhibited kinase‐off signalling behaviour that depended on three C‐terminal hydrophobic residues of AS2. We conclude that AS2/AS2′ packing interactions alone can play an important role in controlling output kinase activity. Neither kinase‐on nor kinase‐off HAMP deletion outputs responded to sensory adaptation control, implying that out‐of‐range conformations or bundle‐packing stabilities of their methylation helices prevent substrate recognition by the adaptation enzymes. These observations support the previously proposed biphasic, dynamic‐bundle mechanism of HAMP signalling and additionally show that the structural interplay of helix‐packing interactions between HAMP and the adjoining methylation helices is critical for sensory adaptation control of receptor output.  相似文献   

9.
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.  相似文献   

10.
HAMP domains communicate between input and output signalling elements in bacterial proteins. In the Tsr chemoreceptor, they convert axial movement of transmembrane helix 2 into changes in packing of the cytoplasmic kinase-control module (KCM). Zhou et al . suggest transmembrane helix 2 'tugs' on HAMP to destabilize x-da packing of the parallel four-helix bundle of the HAMP homodimer. Attractants would inhibit tugging. HAMP stability may be inversely related to stability of the a-d packing of the anti-parallel four-helix bundle of KCM, a relationship possibly facilitated by HAMP/KCM helical mismatch. The beauty of this idea lies in its simplicity and testability.  相似文献   

11.
Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors.  相似文献   

12.
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor–P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5–receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW–receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.  相似文献   

13.
The four transmembrane chemoreceptors of Escherichia coli sense phenol as either an attractant (Tar) or a repellent (Tap, Trg, and Tsr). In this study, we investigated the Tar determinants that mediate its attractant response to phenol and the Tsr determinants that mediate its repellent response to phenol. Tar molecules with lesions in the aspartate-binding pocket of the periplasmic domain, with a foreign periplasmic domain (from Tsr or from several Pseudomonas chemoreceptors), or lacking nearly the entire periplasmic domain still mediated attractant responses to phenol. Similarly, Tar molecules with the cytoplasmic methylation and kinase control domains of Tsr still sensed phenol as an attractant. Additional hybrid receptors with signaling elements from both Tar and Tsr indicated that the transmembrane (TM) helices and HAMP domain determined the sign of the phenol-sensing response. Several amino acid replacements in the HAMP domain of Tsr, particularly attractant-mimic signaling lesions at residue E248, converted Tsr to an attractant sensor of phenol. These findings suggest that phenol may elicit chemotactic responses by diffusing into the cytoplasmic membrane and perturbing the structural stability or position of the TM bundle helices, in conjunction with structural input from the HAMP domain. We conclude that behavioral responses to phenol, and perhaps to temperature, cytoplasmic pH, and glycerol, as well, occur through a general sensing mechanism in chemoreceptors that detects changes in the structural stability or dynamic behavior of a receptor signaling element. The structurally sensitive target for phenol is probably the TM bundle, but other behaviors could target other receptor elements.  相似文献   

14.

Background  

Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs) of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr), which contributes to an increase in the steady-state (adapted) methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA) and an adaptor protein (CheW), but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation.  相似文献   

15.
Winston SE  Mehan R  Falke JJ 《Biochemistry》2005,44(38):12655-12666
The aspartate receptor is one of the ligand-specific, homodimeric chemoreceptors that detects extracellular attractants and triggers the chemotaxis pathway of Escherichia coli and Salmonella typhimurium. This receptor regulates the activity of the histidine kinase CheA, which forms a kinetically stable complex with the receptor cytoplasmic domain. An atomic four-helix bundle model has been constructed for this domain, which is functionally subdivided into the signaling and adaptation subdomains. The proposed four-helix bundle structure of the signaling subdomain, which binds CheA, is fully supported by experimental evidence. Much less evidence is available to test the four-helix bundle model of the adaptation subdomain, which possesses covalent adaptation sites and docking surfaces for adaptation enzymes. The present study focuses on a putative helix near the C terminus of the adaptation subdomain. To probe the structural and functional features of positions G467-A494 in this C-terminal region, a cysteine and disulfide scanning approach has been employed. Measurement of the chemical reactivities of scanned cysteines reveals an alpha-helical periodicity of exposed and buried residues, confirming alpha-helical secondary structure and mapping out a buried packing face. The effects of cysteine substitutions on activity in vivo and in vitro highlight the functional importance of the helix, especially its buried face. A scan for disulfide bond formation between symmetric pairs of engineered cysteines reveals promiscuous collisions between subunits, indicating the presence of significant thermal dynamics. A scan for functional disulfides reveals lock-on and signal-retaining disulfide bonds formed between symmetric pairs of cysteines at buried positions, indicating that the buried face of the helix lies near the subunit interface of the homodimer in the equilibrium structures of both the apo and aspartate-bound states where it plays a critical role in kinase regulation. These results strongly support the existing four-helix bundle model of the adaptation subdomain structure. A mechanistic model is proposed in which a signal is transmitted through the adaptation subdomain by a change in supercoiling of the four-helix bundle.  相似文献   

16.
HAMP domains, ~55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function.  相似文献   

17.
The serine chemoreceptor Tsr and other methyl-accepting chemotaxis proteins (MCPs) control the swimming behaviour of Escherichia coli by generating signals that influence the direction of flagellar rotation. MCPs produce clockwise (CW) signals by stimulating the autophosphorylation activity of CheA, a cytoplasmic histidine kinase, and counter-clockwise signals by inhibiting CheA. CheW couples CheA to chemoreceptor control by promoting formation of MCP/CheW/CheA ternary complexes. To identify MCP structural determinants essential for CheA stimulation, we inserted fragments of the tsr coding region into an inducible expression vector and used a swimming contest called 'pseudotaxis' to select for transformant cells carrying CW-signalling plasmids. The shortest active fragment we found, Tsr (350–470), stimulated CheA in a CheW-dependent manner, as full-length Tsr molecules do. It spans a highly conserved 'core' (370–420) that probably specifies the CheA and CheW contact sites and other determinants needed for stimulatory control of CheA. Tsr (350–470) also carries portions of the left and right arms flanking the core, which probably play roles in regulating MCP signalling state. However, this Tsr fragment lacks all of the methylation sites characteristic of MCP molecules, indicating that methylation segments are not essential for generating receptor output signals.  相似文献   

18.
The Escherichia coli chemoreceptors for serine (Tsr) and aspartate (Tar) and several bacterial class III adenylyl cyclases (ACs) share a common molecular architecture; that is, a membrane anchor that is linked via a cytoplasmic HAMP domain to a C-terminal signal output unit. Functionality of both proteins requires homodimerization. The chemotaxis receptors are well characterized, whereas the typical hexahelical membrane anchor (6TM) of class III ACs, suggested to operate as a channel or transporter, has no known function beyond a membrane anchor. We joined the intramolecular networks of Tsr or Tar and two bacterial ACs, Rv3645 from Mycobacterium tuberculosis and CyaG from Arthrospira platensis, across their signal transmission sites, connecting the chemotaxis receptors via different HAMP domains to the catalytic AC domains. AC activity in the chimeras was inhibited by micromolar concentrations of l-serine or l-aspartate in vitro and in vivo. Single point mutations known to abolish ligand binding in Tar (R69E or T154I) or Tsr (R69E or T156K) abrogated AC regulation. Co-expression of mutant pairs, which functionally complement each other, restored regulation in vitro and in vivo. Taken together, these studies demonstrate chemotaxis receptor-mediated regulation of chimeric bacterial ACs and connect chemical sensing and AC regulation.  相似文献   

19.
Coleman MD  Bass RB  Mehan RS  Falke JJ 《Biochemistry》2005,44(21):7687-7695
The aspartate receptor of the bacterial chemotaxis pathway serves as a scaffold for the formation of a multiprotein signaling complex containing the receptor and the cytoplasmic pathway components. Within this complex, the receptor regulates the autophosphorylation activity of histidine kinase CheA, thereby controlling the signals sent to the flagellar motor and the receptor adaptation system. The receptor cytoplasmic domain, which controls the on-off switching of CheA, possesses 14 glycine residues that are highly conserved in related receptors. In principle, these conserved glycines could be required for static turns, bends, or close packing in the cytoplasmic domain, or they could be required for conformational dynamics during receptor on-off switching. To determine which glycines are essential and to probe their functional roles, we have substituted each conserved glycine with both alanine and cysteine, and then measured the effects on receptor function in vivo and in vitro. The results reveal a subset of six glycines which are required for receptor function during cellular chemotaxis. Two of these essential glycines (G388 and G391) are located at a hairpin turn at the distal end of the folded cytoplasmic domain, where they are required for the tertiary fold of the signaling subdomain and for CheA kinase activation. Three other essential glycines (G338, G339, and G437) are located at the border between the adaptation and signaling subdomains, where they play key roles in CheA kinase activation and on-off switching. These three glycines form a ring around the four-helix bundle that comprises the receptor cytoplasmic domain, yielding a novel architectural feature termed a bundle hinge. The final essential glycine (G455) is located in the adaptation subdomain where it is required for on-off switching. Overall, the findings confirm that six of the 14 conserved cytoplasmic glycines are essential for receptor function because they enable helix turns and bends required for native receptor structure, and in some cases for switching between the on and off signaling states. An initial working model proposes that the novel bundle hinge enables the four-helix bundle to bend, perhaps during the assembly of the receptor trimer of dimers or during on-off switching. More generally, the findings predict that certain human disease states, including specific cancers, could be triggered by lock-on mutations at essential glycine positions that control the on-off switching of receptors and signaling proteins.  相似文献   

20.
Chemoreceptors such as Tsr, the serine receptor, function in trimer-of-dimer associations to mediate chemotactic behavior in Escherichia coli. The two subunits of each receptor homodimer occupy different positions in the trimer, one at its central axis and the other at the trimer periphery. Residue N381 of Tsr contributes to trimer stability through interactions with its counterparts in a central cavity surrounded by hydrophobic residues at the trimer axis. To assess the functional role of N381, we created and characterized a full set of amino acid replacements at this Tsr residue. We found that every amino acid replacement at N381 destroyed Tsr function, and all but one (N381G) of the mutant receptors also blocked signaling by Tar, the aspartate chemoreceptor. Tar jamming reflects the formation of signaling-defective mixed trimers of dimers, and in vivo assays with a trifunctional cross-linking reagent demonstrated trimer-based interactions between Tar and Tsr-N381 mutants. Mutant Tsr molecules with a charged amino acid or proline replacement exhibited the most severe trimer formation defects. These trimer-defective receptors, as well as most of the trimer-competent mutant receptors, were unable to form ternary signaling complexes with the CheA kinase and with CheW, which couples CheA to receptor control. Some of the trimer-competent mutant receptors, particularly those with a hydrophobic amino acid replacement, may not bind CheW/CheA because they form conformationally frozen or distorted trimers. These findings indicate that trimer dynamics probably are important for ternary complex assembly and that N381 may not be a direct binding determinant for CheW/CheA at the trimer periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号