首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of misfolded and damaged proteins by the 26 S proteasome requires the substrate to be tagged with a polyubiquitin chain. Assembly of polyubiquitin chains and subsequent substrate labeling potentially involves three enzymes, an E1, E2, and E3. E2 proteins are key enzymes and form a thioester intermediate through their catalytic cysteine with the C-terminal glycine (Gly76) of ubiquitin. This thioester intermediate is easily hydrolyzed in vitro and has eluded structural characterization. To overcome this, we have engineered a novel ubiquitin-E2 disulfide-linked complex by mutating Gly76 to Cys76 in ubiquitin. Reaction of Ubc1, an E2 from Saccharomyces cerevisiae, with this mutant ubiquitin resulted in an ubiquitin-E2 disulfide that could be purified and was stable for several weeks. Chemical shift perturbation analysis of the disulfide ubiquitin-Ubc1 complex by NMR spectroscopy reveals an ubiquitin-Ubc1 interface similar to that for the ubiquitin-E2 thioester. In addition to the typical E2 catalytic domain, Ubc1 contains an ubiquitin-associated (UBA) domain, and we have utilized NMR spectroscopy to demonstrate that in this disulfide complex the UBA domain is freely accessible to non-covalently bind a second molecule of ubiquitin. The ability of the Ubc1 to bind two ubiquitin molecules suggests that the UBA domain does not interact with the thioester-bound ubiquitin during polyubiquitin chain formation. Thus, construction of this novel ubiquitin-E2 disulfide provides a method to characterize structurally the first step in polyubiquitin chain assembly by Ubc1 and its related class II enzymes.  相似文献   

2.
3.
4.
Sgt1 is an adaptor protein implicated in a variety of processes, including formation of the kinetochore complex in yeast, and regulation of innate immunity systems in plants and animals. Sgt1 has been found to associate with SCF E3 ubiquitin ligases, the CBF3 kinetochore complex, plant R proteins and related animal Nod-like receptors, and with the Hsp90 molecular chaperone. We have determined the crystal structure of the core Hsp90–Sgt1 complex, revealing a distinct site of interaction on the Hsp90 N-terminal domain. Using the structure, we developed mutations in Sgt1 interfacial residues, which specifically abrogate interaction with Hsp90, and disrupt Sgt1-dependent functions in vivo, in plants and yeast. We show that Sgt1 bridges the Hsp90 molecular chaperone system to the substrate-specific arm of SCF ubiquitin ligase complexes, suggesting a role in SCF assembly and regulation, and providing multiple complementary routes for ubiquitination of Hsp90 client proteins.  相似文献   

5.
TRAC-1 (T cell RING (really interesting new gene) protein identified in activation screen) is a novel E3 ubiquitin ligase identified from a retroviral vector-based T cell surface activation marker screen. The C-terminal truncated TRAC-1 specifically inhibited anti-TCR-mediated CD69 up-regulation in Jurkat cells, a human T leukemic cell line. In this study, we show that TRAC-1 is a RING finger ubiquitin E3 ligase with highest expression in lymphoid tissues. Point mutations that disrupt the Zn(2+)-chelating ability of its amino-terminal RING finger domain abolished TRAC-1's ligase activity and the dominant inhibitory effect of C-terminal truncated TRAC-1 on TCR stimulation. The results of in vitro biochemical studies indicate that TRAC-1 can stimulate the formation of both K48- and K63-linked polyubiquitin chains and therefore could potentially activate both degradative and regulatory ubiquitin-dependent pathways. Antisense oligonucleotides to TRAC-1 specifically reduced TRAC-1 mRNA levels in Jurkat and primary T cells and inhibited their activation in response to TCR cross-linking. Collectively, these results indicate that the E3 ubiquitin ligase TRAC-1 functions as a positive regulator of T cell activation.  相似文献   

6.
Mutations at solvent-inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. Both the two null mutants (I30A and L43A) were less stable to temperature-induced unfolding in vitro than wild type (WT) but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to WT. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high-molecular-weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high-molecular-weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings, we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation.  相似文献   

7.
Protein ubiquitination plays an important role in the regulation of almost every aspect of eukaryotic cellular function; therefore, its destabilization is often observed in most human diseases and cancers. Consequently, developing inhibitors of the ubiquitination system for the treatment of cancer has been a recent area of interest. Currently, only a few classes of compounds have been discovered to inhibit the ubiquitin-activating enzyme (E1) and only one class is relatively selective in E1 inhibition in cells. We now report that Largazole and its ester and ketone analogs selectively inhibit ubiquitin conjugation to p27(Kip1) and TRF1 in vitro. The inhibitory activity of these small molecules on ubiquitin conjugation has been traced to their inhibition of the ubiquitin E1 enzyme. To further dissect the mechanism of E1 inhibition, we analyzed the effects of these inhibitors on each of the two steps of E1 activation. We show that Largazole and its derivatives specifically inhibit the adenylation step of the E1 reaction while having no effect on thioester bond formation between ubiquitin and E1. E1 inhibition appears to be specific to human E1 as Largazole ketone fails to inhibit the activation of Uba1p, a homolog of E1 in Schizosaccharomyces pombe. Moreover, Largazole analogs do not significantly inhibit SUMO E1. Thus, Largazole and select analogs are a novel class of ubiquitin E1 inhibitors and valuable tools for studying ubiquitination in vitro. This class of compounds could be further developed and potentially be a useful tool in cells.  相似文献   

8.
Herpes simplex virus 1 (HSV-1) regulatory protein ICP0 stimulates efficient infection via its E3 ubiquitin ligase activity that causes degradation of several cellular proteins, some of which are sumoylated. Chicken adenovirus Gam1 protein also interferes with the sumoylation pathway, and both proteins disrupt promyelocytic leukemia protein (PML) nuclear bodies (NBs). We report that Gam1 increases the infection efficiency of ICP0-null mutant HSV-1 by approximately 100-fold, thus strengthening the hypothesis that PML NB- and sumoylation-related mechanisms are important factors in the control of HSV-1 infection.  相似文献   

9.
Activation of the p53 protein protects the organism against the propagation of cells that carry damaged DNA with potentially oncogenic mutations. MDM2, a p53-specific E3 ubiquitin ligase, is the principal cellular antagonist of p53, acting to limit the p53 growth-suppressive function in unstressed cells. In unstressed cells, MDM2 constantly monoubiquitinates p53 and thus is the critical step in mediating its degradation by nuclear and cytoplasmic proteasomes. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. Disruption of the p53-MDM2 complex by multiple routes is the pivotal event for p53 activation, leading to p53 induction and its biological response. Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.  相似文献   

10.
The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.  相似文献   

11.
Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.  相似文献   

12.
The ubiquitin proteasome system (UPS) plays a critical function in cellular homeostasis. The misregulation of UPS is often found in human diseases, including cancer. Kelch-like protein 6 (KLHL6) is an E3 ligase gene mutated in diffused large B-cell lymphoma (DLBCL). This review discusses the function of KLHL6 as a cullin3-RING ligase and how cancer-associated mutations disrupt the interaction with the cullin3, resulting in the loss of KLHL6 function. Furthermore, the mRNA decay factor Roquin2 is discussed as the first bona fide substrate of KLHL6 in the context of B-cell receptor activation and B-cell lymphoma. Importantly, the tumor-suppressing mechanism of KLHL6 via the degradation of Roquin2 and the mRNA decay in the context of the NF-κB pathway is summarized.  相似文献   

13.
Ahmed MR  Zhan X  Song X  Kook S  Gurevich VV  Gurevich EV 《Biochemistry》2011,50(18):3749-3763
Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.  相似文献   

14.
To study the structure and function of ubiquitin we have chemically synthesized a ubiquitin gene that encodes the amino acid sequence of animal ubiquitin, inserting a series of restriction enzyme sites that divide the gene into eight "mutagenesis modules." A series of site-specific mutations were constructed to selectively perturb various regions of the molecule. The mutant genes were expressed in a large quantity of Escherichia coli, and the modified proteins were purified. To determine the structural effects of the amino acid substitutions, the solution structure of ubiquitin was investigated by two-dimensional NMR and each of the mutant proteins were screened for structural perturbations. With one exception, virtually no changes were seen other than at the point of mutation. Functional studies of the mutant proteins with the ubiquitin-activating enzyme E1 and in the reticulocyte protein degradation assay were used to identify regions of the molecule important to ubiquitin's activity in intracellular proteolysis.  相似文献   

15.
Autosomal recessive mutations in the PINK1 gene are causal for Parkinson''s disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD.  相似文献   

16.
Damaged mitochondria are eliminated through autophagy machinery. A cytosolic E3 ubiquitin ligase Parkin, a gene product mutated in familial Parkinsonism, is essential for this pathway. Recent progress has revealed that phosphorylation of both Parkin and ubiquitin at Ser65 by PINK1 are crucial for activation and recruitment of Parkin to the damaged mitochondria. However, the mechanism by which phosphorylated ubiquitin associates with and activates phosphorylated Parkin E3 ligase activity remains largely unknown. Here, we analyze interactions between phosphorylated forms of both Parkin and ubiquitin at a spatial resolution of the amino acid residue by site-specific photo-crosslinking. We reveal that the in-between-RING (IBR) domain along with RING1 domain of Parkin preferentially binds to ubiquitin in a phosphorylation-dependent manner. Furthermore, another approach, the Fluoppi (fluorescent-based technology detecting protein-protein interaction) assay, also showed that pathogenic mutations in these domains blocked interactions with phosphomimetic ubiquitin in mammalian cells. Molecular modeling based on the site-specific photo-crosslinking interaction map combined with mass spectrometry strongly suggests that a novel binding mechanism between Parkin and ubiquitin leads to a Parkin conformational change with subsequent activation of Parkin E3 ligase activity.  相似文献   

17.
The IκB kinase (IKK) complex acts as a gatekeeper of canonical NF-κB signaling in response to upstream stimulation. IKK activation requires sensing of ubiquitin chains by the essential IKK regulatory subunit IKKγ/NEMO. However, it has remained enigmatic whether NEMO binding to Lys-63-linked or linear ubiquitin chains is critical for triggering IKK activation. We show here that the NEMO C terminus, comprising the ubiquitin binding region and a zinc finger, has a high preference for binding to linear ubiquitin chains. However, immobilization of NEMO, which may be reminiscent of cellular oligomerization, facilitates the interaction with Lys-63 ubiquitin chains. Moreover, selective mutations in NEMO that abolish association with linear ubiquitin but do not affect binding to Lys-63 ubiquitin are only partially compromising NF-κB signaling in response to TNFα stimulation in fibroblasts and T cells. In line with this, TNFα-triggered expression of NF-κB target genes and induction of apoptosis was partially compromised by NEMO mutations that selectively impair the binding to linear ubiquitin chains. Thus, in vivo NEMO interaction with linear and Lys-63 ubiquitin chains is required for optimal IKK activation, suggesting that both type of chains are cooperating in triggering canonical NF-κB signaling.  相似文献   

18.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

19.
FOXP3 controls regulatory T cell function through cooperation with NFAT   总被引:34,自引:0,他引:34  
  相似文献   

20.
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL gene. Recent studies suggest that VHL protein (pVHL) is a component of an E3 ubiquitin ligase, but the detailed biological function of pVHL remains to be determined. To further elucidate the biological functions of pVHL, we searched pVHL-interacting proteins using yeast two-hybrid screening. A novel protein named VHL-interacting deubiquitinating enzyme 1 (VDU1) was identified as being able to directly interact with pVHL in vitro and in vivo. We have determined the full-length cDNA of this enzyme, which includes two putative subtypes. Type I consists of 942 amino acids, and type II consists of 911 amino acids with predicted molecular masses of 107 and 103 kDa, respectively. We have also cloned a mouse homologue of this enzyme. Sequence analysis reveals that this protein is conserved between human and mouse and contains the signature motifs of the ubiquitin-specific processing protease family. Enzymatic function studies demonstrate its deubiquitinating activity. We have determined that the VDU1-interacting region in pVHL is located in its beta-domain, and several naturally occurring mutations located in this domain disrupt the interaction between pVHL and VDU1 protein. Co-immunoprecipitation demonstrates that VDU1 can be recruited into the pVHL-elongin C-elongin B complex. Finally, we demonstrate that VDU1 is able to be ubiquitinated via a pVHL-dependent pathway for proteasomal degradation, and VHL mutations that disrupt the interaction between VDU1 and pVHL abrogate the ubiquitination of VDU1. Our findings indicate that VDU1, a novel ubiquitin-specific processing protease, is a downstream target for ubiquitination and degradation by pVHL E3 ligase. Targeted degradation of VDU1 by pVHL could be crucial for regulating the ubiquitin-proteasome degradation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号