首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neurofibromatosis-2 (NF2) tumor suppressor protein, merlin or schwannomin, inhibits cell proliferation by modulating the growth activities of its binding partners, including the cell surface glycoprotein CD44, membrane-cytoskeleton linker protein ezrin and PIKE (PI 3-kinase Enhancer) GTPase etc. Merlin exerts its growth suppressive activity through a folded conformation that is tightly controlled through phosphorylation by numerous protein kinases including PAK, PKA and Akt. Merlin inhibits PI 3-kinase activity through binding to PIKE-L. Now, we show that merlin is a physiological substrate of Akt, which phosphorylates merlin on both T230 and S315 residues. This phosphorylation abolishes the folded conformation of merlin and inhibits its association with PIKE-L, provoking merlin polyubiquitination and proteasome-mediated degradation. This finding demonstrates a negative feed-back loop from merlin/PIKE-L/PI 3-kinase to Akt in tumors. The proliferation repressive activity of merlin is also partially regulated by S518 phosphorylation. Thus, Akt-mediated merlin T230/S315 phosphorylation, combined with S518 phosphorylation by PAK and PKA, provides new insight into abrogating merlin function in the absence of merlin mutational inactivation.  相似文献   

2.
Inactivation of the tumor suppressor Merlin, encoded by the NF2 (Neurofibromatosis type 2) gene, contributes to malignant conversion in many cell types. Merlin is an Ezrin-Radixin-Moesin protein and localizes underneath the plasma membrane at cell-cell junctions and other actin-rich sites. Recent studies indicate that Merlin mediates contact inhibition of proliferation by blocking recruitment of Rac to the plasma membrane. In mitogen-stimulated cells, p21-activated kinase phosphorylates Ser518 in the C-terminus of Merlin, inactivating the growth suppressive function of the protein. Furthermore, the myosin phosphatase MYPT1-PP1delta, has been identified as a direct activator of Merlin and its inhibition has been linked to malignant transformation. Finally, studies in the fruit fly Drosophila melanogaster have revealed that Merlin functions together with the band 4.1 protein Expanded to promote [corrected] the endocytosis of many signaling receptors, limiting [corrected] their accumulation at the plasma membrane, and to activate [corrected] the Hippo signaling pathway. Here, we review these recent findings and their relevance to the tumor suppressor function of Merlin.  相似文献   

3.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

4.
An emerging theme in cell signaling is that membrane-bound channels and receptors are organized into supramolecular signaling complexes for optimum function and cross-talk. In this study, we determined how protein kinase C (PKC) phosphorylation influences the scaffolding protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF) to assemble protein complexes of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel that controls fluid and electrolyte transport across cell membranes. NHERF directs polarized expression of receptors and ion transport proteins in epithelial cells, as well as organizes the homo- and hetero-association of these cell surface proteins. NHERF contains two modular PDZ domains that are modular protein-protein interaction motifs, and a C-terminal domain. Previous studies have shown that NHERF is a phosphoprotein, but how phosphorylation affects NHERF to assemble macromolecular complexes is unknown. We show that PKC phosphorylates two amino acid residues Ser-339 and Ser-340 in the C-terminal domain of NHERF, but a serine 162 of PDZ2 is specifically protected from being phosphorylated by the intact C-terminal domain. PKC phosphorylation-mimicking mutant S339D/S340D of NHERF has increased affinity and stoichiometry when binding to C-CFTR. Moreover, solution small angle x-ray scattering indicates that the PDZ2 and C-terminal domains contact each other in NHERF, but such intramolecular domain-domain interactions are released in the PKC phosphorylation-mimicking mutant indicating that PKC phosphorylation disrupts the autoinhibition interactions in NHERF. The results demonstrate that the C-terminal domain of NHERF functions as an intramolecular switch that regulates the binding capability of PDZ2, and thus controls the stoichiometry of NHERF to assemble protein complexes.  相似文献   

5.
《Biophysical journal》2021,120(16):3341-3354
The flexible conformations of a multidomain protein are responsible for its biological functions. Although MurD, a 47-kDa protein that consists of three domains, sequentially changes its domain conformation from an open form to a closed form through a semiclosed form in its enzymatic reaction, the domain dynamics in each conformation remains unclear. In this study, we verify the conformational dynamics of MurD in the corresponding three states (apo and ATP- and inhibitor-bound states) with a combination of small-angle x-ray and neutron scattering (SAXS and SANS), dynamic light scattering (DLS), neutron backscattering (NBS), neutron spin echo (NSE) spectroscopy, and molecular dynamics (MD) simulations. Applying principal component analysis of the MD trajectories, twisting and open-closed domain modes are identified as the major collective coordinates. The deviations of the experimental SAXS profiles from the theoretical calculations based on the known crystal structures become smaller in the ATP-bound state than in the apo state, and a further decrease is evident upon inhibitor binding. These results suggest that domain motions of the protein are suppressed step by step of each ligand binding. The DLS and NBS data yield collective and self-translational diffusion constants, respectively, and we used them to extract collective domain motions in nanometer and nanosecond scales from the NSE data. In the apo state, MurD shows both twisting and open-closed domain modes, whereas an ATP binding suppresses twisting domain motions, and a further reduction of open-closed mode is seen in the inhibitor-binding state. These observations are consistent with the structure modifications measured by the small-angle scattering as well as the MD simulations. Such changes in the domain dynamics associated with the sequential enzymatic reactions should be related to the affinity and reaction efficiency with a ligand that binds specifically to each reaction state.  相似文献   

6.
X-ray neutron solution scattering experiments have been done to investigate the influence of the binding of ribosomal protein S1 on the conformation of the 30-S ribosomal subunit of Escherichia coli. The following conclusions were made. 1. The alterations (if any) in conformation of the non-S1 parts of the 30-S subunit induced by S1 binding are too small to be detected (less than 0.1 nm change in radius of gyration). 2. The center of gravity of protein S1 bound to the 30-S subunit is quite far from the center of gravity of the particle (approximately 7.5 nm).  相似文献   

7.
The structure of protein SI of Thermus thermophilus (M = 61 kDa) in solution at low and moderate ionic strengths (0 M and 100 mM NaCl, respectively) has been studied by small-angle X-ray and neutron scattering. It was found that protein S1 has a globular conformation under both ionic conditions. The modelling of different packing of six homologous domains of S1 on the basis of the NMR-resolved structure of one domain showed that the best fit of calculated scattering patterns from such complexes to experimental ones is observed at a compact package of the domains. The calculated value of the radius of gyration of the models is 28-29 angtroms, which is characteristic for globular proteins with a molecular mass of about 60 kDa. It was found that protein S1 has a tendency to form associates, and the type of the associate depends on ionic strength. These associates have, in general, two or three monomers at a moderate ionic strength, while at a low ionic strength the number of monomers exceeds three and they are packed in a compact manner. Strongly elongated associates were observed in neutron experiments at a moderate ionic strength in heavy water. The association of protein molecules was also confirmed by the data of dynamic light scattering. From these data, the translational diffusion coefficient of protein S1 at a moderate ionic strength was calculated to be (D20,w = (2.7 +/- 0.1) x 10(-7)cm2/s). This value is essentially smaller than the expected value (D20,w = (5.8 - 6.0) x 10(-7)cm2/s) for the S1 monomer in the globular conformation, indicating the association of protein molecules under equilibrium conditions.  相似文献   

8.
Scaffolding proteins are molecular switches that control diverse signaling events. The scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) assembles macromolecular signaling complexes and regulates the macromolecular assembly, localization, and intracellular trafficking of a number of membrane ion transport proteins, receptors, and adhesion/antiadhesion proteins. NHERF1 begins with two modular protein-protein interaction domains—PDZ1 and PDZ2—and ends with a C-terminal (CT) domain. This CT domain binds to ezrin, which, in turn, interacts with cytosekeletal actin. Remarkably, ezrin binding to NHERF1 increases the binding capabilities of both PDZ domains. Here, we use deuterium labeling and contrast variation neutron-scattering experiments to determine the conformational changes in NHERF1 when it forms a complex with ezrin. Upon binding to ezrin, NHERF1 undergoes significant conformational changes in the region linking PDZ2 and its CT ezrin-binding domain, as well as in the region linking PDZ1 and PDZ2, involving very long range interactions over 120 Å. The results provide a structural explanation, at mesoscopic scales, of the allosteric control of NHERF1 by ezrin as it assembles protein complexes. Because of the essential roles of NHERF1 and ezrin in intracellular trafficking in epithelial cells, we hypothesize that this long-range allosteric regulation of NHERF1 by ezrin enables the membrane-cytoskeleton to assemble protein complexes that control cross-talk and regulate the strength and duration of signaling.  相似文献   

9.
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.  相似文献   

10.
The channel activity of the outer-membrane protein G (OmpG) from Escherichia coli is pH-dependent. To investigate the role of the histidine pair His231/His261 in triggering channel opening and closing, we mutated both histidines to alanines and cysteines. Fourier transform infrared spectra revealed that the OmpG mutants stay—independent of pH—in an open conformation. Temperature ramp experiments indicate that the mutants are as stable as the open state of wild-type OmpG. The X-ray structure of the alanine-substituted OmpG mutant obtained at pH 6.5 confirms the constitutively open conformation. Compared to previous structures of the wild-type protein in the open and closed conformation, the mutant structure shows a difference in the extracellular loop L6 connecting β-strands S12 and S13. A deletion of amino acids 220-228, which are thought to block the channel at low pH in wild-type OmpG, indicates conformational changes, which might be triggered by His231/His261.  相似文献   

11.
The closed conformation of substrate binding loop (SBL) is considered significant for biological activity of direct InhA inhibitors (DIIs). However, exact interactions of SBL with inhibitors are not characterized yet to emphasize over SBL conformations. The seven InhA-DII complexes are analyzed using molecular dynamics simulation to deduce the mechanism for closed and open conformation of SBL. MMGBSA binding energy calculations and decompositions help to identify Ala198, Met199, Ile202, Val203, Ile215, and Leu218 in SBL region as the key residues. The interactions of DIIs with SBL residues particularly Ile202, Val203, Ile215, and Leu218 are found considerable for closed SBL conformation. This difference is accounted for closed state of SBL in 2X23, and open/moderately open state in other complexes. This study substantiates the loop ordering property of DIIs as the basis for high-affinity InhA inhibitors under the molecular recognition phenomena. This property can be used as a parameter to identify potential DIIs using virtual screening approaches.  相似文献   

12.
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion.  相似文献   

13.
Mamonova T  Yonkunas MJ  Kurnikova MG 《Biochemistry》2008,47(42):11077-11085
The ionotropic glutamate receptors are localized in the pre- and postsynaptic membrane of neurons in the brain. Activation by the principal excitatory neurotransmitter glutamate allows the ligand binding domain to change conformation, communicating opening of the channel for ion conduction. The free energy of the GluR2 S1S2 ligand binding domain (S1S2) closure transition was computed using a combination of thermodynamic integration and umbrella sampling modeling methods. A path that involves lowering the charge on E705 was chosen to clarify the role of this binding site residue. A continuum electrostatics approach in S1S2 is used to show E705, located in the ligand binding cleft, stabilizes the closed conformation of S1S2 via direct interactions with other protein residues, not through the ligand. In the closed conformation, in the absence of a ligand, S1S2 is somewhat more closed than what has been reported in X-ray structures. A semiopen conformation has been identified which is characterized by disruption of a single cross-cleft interaction and differs only slightly in energy from the fully closed S1S2. The fully open S1S2 conformation exhibits a wide energy well and shares structural similarity with the apo S1S2 crystal structure. Hybrid continuum electrostatics/MD calculations along the chosen closure transition pathway reveal solvation energies, and electrostatic interaction energies between two lobes of the protein increase the relative energetic difference between the open and closed conformational states. By analyzing the role of several cross-cleft contacts as well as other binding site residues, we demonstrate how S1S2 interactions facilitate formation of the closed conformation of the GluR2 ligand binding domain.  相似文献   

14.
Small-angle X-ray scattering experiments were carried out for the maltose-, glucose/galactose- and ribose-binding proteins of Gram negative bacteria. All were shown to be monomers that decrease in radius of gyration on ligand binding.The results obtained for the maltose-binding protein agree well with crystal structures of the closed, ligand-bound, and open, ligand-free protein, suggesting that these are indeed the primary forms in solution. The closed form is stabilized by protein – sugar interactions, while the open conformation is stabilized by close contacts between the two domains. Since it is the proper spacial relationship of the domains in the closed form that is most important for interaction with chemotaxis and transport partners, the stabilization of the open form would help keep ligand-free molecules from interfering in function.The scattering results also provide evidence that a large conformational change takes place in association with ligand binding to the glucose/galactose- and ribose-binding proteins, and that the two changes are similar. Modeling suggests that the open forms resemble those found in the related leucine and leucine/isoleucine/valine-binding proteins, but are different from those observed for the maltose-binding protein and the related purine repressor.  相似文献   

15.
Endosomal sorting complexes required for transport (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) are selectively recruited to cellular membranes to exert their function in diverse processes, such as multivesicular body biogenesis, enveloped virus budding, and cytokinesis. ESCRT-III is composed of members of the charged multivesicular body protein (CHMP) family—cytosolic proteins that are targeted to membranes via yet unknown signals. Membrane targeting is thought to result in a membrane-associated protein network that presumably acts at a late budding step. Here we provide structural evidence based on small-angle X-ray scattering data that ESCRT-III CHMP3 can adopt two conformations in solution: a closed globular form that most likely represents the cytosolic conformation and an open extended conformation that might represent the activated form of CHMP3. Both the closed and open conformations of CHMP3 interact with AMSH with high affinity. Although the C-terminal region of CHMP3 is required for AMSH interaction, a peptide thereof reveals only weak binding to AMSH, suggesting that other regions of CHMP3 contribute to the high-affinity interaction. Thus, AMSH, including its MIT (microtubule interacting and transport) domain, interacts with ESCRT-III CHMP3 differently from reported Vps4 MIT domain-CHMP protein interactions.  相似文献   

16.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

17.
The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a β-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.  相似文献   

18.
Protein engineering was used previously to convert maltose-binding protein (MBP) into a zinc biosensor. Zn(2+) binding by the engineered MBP was thought to require a large conformational change from "open" to "closed", similar to that observed when maltose is bound by the wild-type protein. We show that although this re-designed MBP molecule binds Zn(2+) with high affinity as previously reported, it does not adopt a closed conformation in solution as assessed by small-angle X-ray scattering. High-resolution crystallographic studies of the engineered Zn(2+)-binding MBP molecule demonstrate that Zn(2+) is coordinated by residues on the N-terminal lobe only, and therefore Zn(2+) binding does not require the protein to adopt a fully closed conformation. Additional crystallographic studies indicate that this unexpected Zn(2+) binding site can also coordinate Cu(2+) and Ni(2+) with only subtle changes in the overall conformation of the protein. This work illustrates that the energetic barrier to domain closure, which normally functions to maintain MBP in an open concentration in the absence of ligand, is not easily overcome by protein design. A comparison to the mechanism of maltose-induced domain rearrangement is discussed.  相似文献   

19.
Plant plasma membrane aquaporins facilitate water flux into and out of plant cells, thus coupling their cellular function to basic aspects of plant physiology. Posttranslational modifications of conserved phosphorylation sites, changes in cytoplasmic pH and the binding of Ca2+ can regulate water transport activity by gating the plasma membrane aquaporins. A structural mechanism unifying these diverse biochemical signals has emerged for the spinach aquaporin SoPIP2;1, although several questions concerning the opening mechanism remain. Here, we describe the X-ray structures of the S115E and S274E single SoPIP2;1 mutants and the corresponding double mutant. Phosphorylation of these serines is believed to increase water transport activity of SoPIP2;1 by opening the channel. However, all mutants crystallised in a closed conformation, as confirmed by water transport assays, implying that neither substitution fully mimics the phosphorylated state. Nevertheless, a half-turn extension of transmembrane helix 1 occurs upon the substitution of Ser115, which draws the Cα atom of Glu31 10 Å away from its wild-type conformation, thereby disrupting the divalent cation binding site involved in the gating mechanism. Mutation of Ser274 disorders the C-terminus but no other significant conformational changes are observed. Inspection of the hydrogen-bond interactions within loop D suggested that the phosphorylation of Ser188 may also produce an open channel, and this was supported by an increased water transport activity for the S188E mutant and molecular dynamics simulations. These findings add additional insight into the general mechanism of plant aquaporin gating.  相似文献   

20.
The periplasmic-binding proteins in ATP-binding cassette systems (ABC Transporters) are responsible for the capture and delivery of ligands to their specific transporters, triggering a series of ATP-driven conformational changes that leads to the transport of the ligand. Structurally consisting of two lobes, the proteins change conformation after interaction with the ligand. The structure of the molybdate-binding protein (ModA) from Xanthomonas citri, bound to molybdate, was previously solved by our group and an interdomain interaction, mediated by a salt bridge between K127 and D59, apparently supports the binding properties and keeps the domains closed. To determinate the importance of this interaction, we built two ModA mutants, K127S and D59A, and analysed their functional and structural properties. Based on a set of spectroscopic experiments, crystallisation trials, structure determination and molecular dynamics (MD) simulations, we showed that the salt bridge is essential to maintain the structure and binding properties. Additionally, the MD simulations revealed that this mutant adopted a more compact structure that packed down the ligand-binding pocket. From the closed bound to open structure, the positioning of the helices forming the dipole and the salt bridge are essential to induce an intermediate state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号