共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. 相似文献
3.
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354–363 and 371–379 separated by a more flexible segment of residues 364–370. In LPPG micelles a helical conformation was observed for residues 354–377 with greater flexibility in the 366–367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion. 相似文献
4.
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM–TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717–726 and 732–746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3 ns. The positioning of the helix–linker–helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization. 相似文献
5.
Si Yan Guangjin Hou Charles D. Schwieters Shubbir Ahmed John C. Williams Tatyana Polenova 《Journal of molecular biology》2013
Microtubules and their associated proteins play important roles in vesicle and organelle transport, cell motility and cell division. Perturbation of these processes by mutation typically gives rise to severe pathological conditions. In our efforts to obtain atomic information on microtubule-associated protein/microtubule interactions with the goal to understand mechanisms that might potentially assist in the development of treatments for these diseases, we have determined the three-dimensional structure of CAP-Gly (cytoskeleton-associated protein, glycine-rich) domain of mammalian dynactin by magic angle spinning NMR spectroscopy. We observe two conformations in the β2 strand encompassing residues T43-V44-A45, residues that are adjacent to the disease-associated mutation, G59S. Upon binding of CAP-Gly to microtubule plus-end tracking protein EB1, the CAP-Gly shifts to a single conformer. We find extensive chemical shift perturbations in several stretches of residues of CAP-Gly upon binding to EB1, from which we define accurately the CAP-Gly/EB1 binding interface. We also observe that the loop regions may exhibit unique flexibility, especially in the GKNDG motif, which participates in the microtubule binding. This study in conjunction with our previous reports suggests that conformational plasticity is an intrinsic property of CAP-Gly likely due to its unusually high loop content and may be required for its biological functions. 相似文献
6.
Kan-Nian Hu 《Journal of molecular biology》2009,392(4):1055-10646
Solid-state nuclear magnetic resonance (NMR) techniques are used to investigate the structure of the 35-residue villin headpiece subdomain (HP35) in folded, partially denatured, and fully denatured states. Experiments are carried out in frozen glycerol/water solutions, with chemical denaturation by guanidine hydrochloride (GdnHCl). Without GdnHCl, two-dimensional solid-state 13C NMR spectra of samples prepared with uniform 13C labeling of selected residues show relatively sharp cross-peaks at chemical shifts that are consistent with the known three-helix bundle structure of folded HP35. At high GdnHCl concentrations, most cross-peaks broaden and shift, qualitatively indicating disruption of the folded structure and development of static conformational disorder in the frozen denatured state. Conformational distributions at one residue in each helical segment are probed quantitatively with three solid-state NMR techniques that provide independent constraints on backbone ? and ψ torsion angles in samples with sequential pairs of carbonyl 13C labels. Without GdnHCl, the combined data are well fit by α-helical conformations. At [GdnHCl] = 4.5 M, corresponding to the approximate denaturation midpoint, the combined data are well fit by a combination of α-helical and partially extended conformations at each site, but with a site-dependent population ratio. At [GdnHCl] = 7.0 M, corresponding to the fully denatured state, the combined data are well fit by a combination of partially extended and polyproline II conformations, again with a site-dependent population ratio. Two entirely different models for conformational distributions lead to nearly the same best-fit distributions, demonstrating the robustness of these conclusions. This work represents the first quantitative investigation of site-specific conformational distributions in partially folded and unfolded states of a protein by solid-state NMR. 相似文献
7.
Rodrigo M. Verly Jarbas M. Resende Christopher Aisenbrey Dorila Piló-Veloso Fábio C.L. Almeida 《Biophysical journal》2009,96(6):2194-2203
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an α-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with 15N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting 15N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled 31P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing. 相似文献
8.
Veronica R. Moorman Kathleen G. Valentine Sabrina BédardJakob Dogan Fiona M. Love A. Joshua Wand 《Journal of molecular biology》2014
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type guanosine triphosphatase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21-activated kinase 3, is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation was measured to investigate the dynamical changes in activated GMPPCP·Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side-chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl-bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately − 10 kcal mol− 1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs becomes more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring becomes more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding. 相似文献
9.
Schmidt H Hoffmann S Tran T Stoldt M Stangler T Wiesehan K Willbold D 《Journal of molecular biology》2007,365(5):1517-1532
We studied the interaction of hematopoietic cell kinase SH3 domain (HckSH3) with an artificial 12-residue proline-rich peptide PD1 (HSKYPLPPLPSL) identified as high affinity ligand (K(D)=0.2 muM). PD1 shows an unusual ligand sequence for SH3 binding in type I orientation because it lacks the typical basic anchor residue at position P(-3), but instead has a tyrosine residue at this position. A basic lysine residue, however, is present at position P(-4). The solution structure of the HckSH3:PD1 complex, which is the first HckSH3 complex structure available, clearly reveals that the P(-3) tyrosine residue of PD1 does not take the position of the typical anchor residue but rather forms additional van der Waals interactions with the HckSH3 RT loop. Instead, lysine at position P(-4) of PD1 substitutes the function of the P(-3) anchor residue. This finding expands the well known ligand consensus sequence +xxPpxP by +xxxPpxP. Thus, software tools like iSPOT fail to identify PD1 as a high-affinity HckSH3 ligand so far. In addition, a short antiparallel beta-sheet in the RT loop of HckSH3 is observed upon PD1 binding. The structure of the HckSH3:PD1 complex reveals novel features of SH3 ligand binding and yields new insights into the structural basics of SH3-ligand interactions. Consequences for computational prediction tools adressing SH3-ligand interactions as well as the biological relevance of our findings are discussed. 相似文献
10.
Nuclear magnetic resonance (NMR) remains the most promising technique for acquiring atomic-resolution information in complex carbohydrates. Significant obstacles to the acquisition of such data are the poor chemical-shift dispersion and artifacts resultant from their degenerate chemical structures. The recent development of ultra-high-field NMR (at 900 MHz and beyond) gives new potential to overcome these problems, as we demonstrate on a hexasaccharide of the highly repetitive glycosaminoglycan hyaluronan. At 900 MHz, the expected increase in spectral dispersion due to higher resonance frequencies and reduction in strong coupling-associated distortions are observed. In addition, the fortuitous molecular tumbling rate of oligosaccharides results in longer T2-values that further significantly enhances resolution, an effect not available to proteins. Combined, the resolution enhancement can be as much as twofold relative to 600 MHz, allowing all 1H-resonances in the hexasaccharide to be unambiguously assigned using standard natural-abundance experiments. The use of ultra-high-field spectrometers is clearly advantageous and promises a new and exciting era in carbohydrate structural biology. 相似文献
11.
Partial site-specific assignments are reported for the solid state NMR spectra of light-harvesting complex 1, a 160 kDa integral membrane protein. The assignments were derived from 600 MHz 15N-13CO-13Cα and 15N-13Cα-13CX correlation spectra, using uniformly 13C, 15N enriched hydrated material, in an intact and precipitated form. Sequential assignments were verified using characteristic 15N-13Cα-13Cβ side chain chemical shifts observed in 3D experiments. Tertiary contacts found in 2D DARR spectra of the selectively 13C enriched sample provided further confirmatory evidence for the assignments. The assignments include the region of the Histidine ligands binding the Bacteriochlorophyll chromophore. The chemical shifts of Cα and Cβ resonances indicated the presence of typical α-helical secondary structure, consistent with previous studies. 相似文献
12.
Teppei Ikeya David Ban Donghan Lee Yutaka Ito Koichi Kato Christian Griesinger 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(2):287-306
Background
To understand the mechanisms related to the ‘dynamical ordering’ of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells.Scope of review
In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges.Major conclusions
Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1 MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques.General significance
For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato. 相似文献13.
Ligang Zhong Vladimir V. Bamm Mumdooh A.M. Ahmed George Harauz Vladimir Ladizhansky 《生物化学与生物物理学报:生物膜》2007,1768(12):3193-3205
Myelin basic protein (MBP, 18.5 kDa isoform) is a peripheral membrane protein that is essential for maintaining the structural integrity of the multilamellar myelin sheath of the central nervous system. Reconstitution of the most abundant 18.5 kDa MBP isoform with lipid vesicles yields an aggregated assembly mimicking the protein's natural environment, but which is not amenable to standard solution NMR spectroscopy. On the other hand, the mobility of MBP in such a system is variable, depends on the local strength of the protein-lipid interaction, and in general is of such a time scale that the dipolar interactions are averaged out. Here, we used a combination of solution and solid-state NMR (ssNMR) approaches: J-coupling-driven polarization transfers were combined with magic angle spinning and high-power decoupling to yield high-resolution spectra of the mobile fragments of 18.5 kDa murine MBP in membrane-associated form. To partially circumvent the problem of short transverse relaxation, we implemented three-dimensional constant-time correlation experiments (NCOCX, NCACX, CONCACX, and CAN(CO)CX) that were able to provide interresidue and intraresidue backbone correlations. These experiments resulted in partial spectral assignments for mobile fragments of the protein. Additional nuclear Overhauser effect spectroscopy (NOESY)-based experiments revealed that the mobile fragments were exposed to solvent and were likely located outside the lipid bilayer, or in its hydrophilic portion. Chemical shift index analysis showed that the fragments were largely disordered under these conditions. These combined approaches are applicable to ssNMR investigations of other peripheral membrane proteins reconstituted with lipids. 相似文献
14.
Crepin T Peterson F Haertlein M Jensen D Wang C Cusack S Kron M 《Journal of molecular biology》2011,405(4):1056-1069
Aminoacyl-tRNA synthetases are validated molecular targets for anti-infective drug discovery because of their essentiality in protein synthesis. Thanks to genome sequencing, it is now possible to systematically study aminoacyl-tRNA synthetases from human eukaryotic parasites as putative targets for novel drug discovery. As part of a program targeting class IIb asparaginyl-tRNA synthetases (AsnRS) from the parasitic nematode Brugia malayi for anti-filarial drugs, we report the complete structure of a eukaryotic AsnRS. Metazoan and fungal AsnRS differ from their bacterial homologues by the addition of a conserved N-terminal extension of about 110 residues whose structure we have determined by solution NMR for the B. malayi enzyme. In addition, we solved by X-ray crystallography a series of structures of the catalytically active N-terminally truncated enzyme (residues 112-548), allowing the structural basis for the mechanism of asparagine activation to be elucidated. The N-terminal domain contains a structured region with a novel fold featuring a lysine-rich helix that is shown by NMR to interact with tRNA. This is connected by an unstructured tether to the remainder of the enzyme, which is highly similar to the known structure of bacterial AsnRS. These data enable a model of the complete AsnRS-tRNA complex to be constructed. 相似文献
15.
Sonja D. Müller Torsten H. Walther Christian Lange Anne S. Ulrich 《生物化学与生物物理学报:生物膜》2007,1768(12):3071-3079
The transmembrane protein TatA is the pore forming unit of the twin-arginine translocase (Tat), which has the unique ability of transporting folded proteins across the cell membrane. This ATP-independent protein export pathway is a recently discovered alternative to the general secretory (Sec) system of bacteria. To obtain insight in the translocation mechanism, the structure and alignment in the membrane of the well-folded segments 2-45 of TatAd from Bacillus subtilis was studied here. Using solid-state NMR in bicelles containing anionic lipids, the topology and orientation of TatAd was determined in an environment mimicking the bacterial membrane. A wheel-like pattern, characteristic for a tilted transmembrane helix, was observed in 15N chemical shift /15N-1H dipolar coupling correlation NMR spectra. Analysis of this PISA wheel revealed a 14-16 residue long N-terminal membrane-spanning helix which is tilted by 17° with respect to the membrane normal. In addition, comparison of uniformly and selectively 15N-labeled TatA2-45 samples allowed determination of the helix polarity angle. 相似文献