首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GroEL/GroES protein folding chamber is formed and dissociated by ATP binding and hydrolysis. ATP hydrolysis in the GroES-bound (cis) ring gates entry of ATP into the opposite unoccupied trans ring, which allosterically ejects cis ligands. While earlier studies suggested that hydrolysis of cis ATP is the rate-limiting step of the cycle (t½ ∼ 10 s), a recent study suggested that ADP release from the cis ring may be rate-limiting (t½ ∼ 15-20 s). Here we have measured ADP release using a coupled enzyme assay and observed a t½ for release of ?4-5 s, indicating that this is not the rate-limiting step of the reaction cycle.  相似文献   

2.
Two heptamer rings of chaperonin GroEL undergo opening-closing conformational transition in the reaction cycle with the aid of GroES and ATP. We introduced Cys into the GroEL subunit at Ala-384 and Ser-509, which are very close between adjacent GroEL subunits in the open heptamer ring but far apart in the closed heptamer ring. The open ring-specific inter-subunit cross-linking between these Cys indicated that the number of rings in open conformation in GroEL was two in ATP (GroELOO), one in ADP (GroELO), and none in the absence of nucleotide. ADP showed an inhibitory effect on ATP-induced generation of GroELOO. The isolated GroELO and GroELOO, which lost any bound nucleotide, could bind GroES to form a bullet-shaped 1:1 GroEL-GroES complex and a football-shaped 1:2 GroEL-GroES complex, respectively, even without the addition of any nucleotide. Substrate protein was unable to form a stable complex with GroELOO and did not stimulate ATPase activity of GroEL. These results favor a model of the GroEL reaction cycle that includes a football complex as a critical intermediate.Chaperonin facilitates the folding of other proteins using the energy of ATP hydrolysis (14). GroEL, an Escherichia coli chaperonin, consists of 14 identical 57-kDa subunits arranged in two heptamer rings. Each ring contains a central open cavity, and the two rings are stacked back-to-back (5). Denatured protein binds to the apical end of the central cavity of the heptamer ring of GroEL (610). In the presence of ATP, a disk-shaped GroES binds to the same apical end as a lid to seal the cavity and generates a chamber. The denatured protein is discharged into the chamber, making this heptamer ring folding-active, where productive folding proceeds (11, 12). After several seconds, the GroES lid is detached from GroEL, and the substrate protein is free to escape into solution.Two heptamer rings of GroEL undergo opening-closing conformational transition, coupled with attachment and detachment of GroES, in the functional cycle (13). In the transition from “closed” to “open” conformation, apical domain of each GroEL subunit in the ring is shifted upward and outward, and the cleft between apical and equatorial domains opens. GroES is associated with the open ring, and two kinds of GroEL-GroES complexes are formed. An asymmetric “bullet”-shaped complex is a 1:1 GroEL-GroES complex in which GroES attached to one of two heptamer rings in GroEL (1416). A symmetric “football”-shaped complex is a 1:2 GroEL-GroES complex in which GroES attached to both heptamer rings of GroEL (1722). The football complex contains two open rings; the bullet complex contains one closed and one open ring, and free GroEL is made up of two closed rings.Previously, we generated the GroEL in which two rings in GroEL were locked in a closed conformation by disulfide cross-link between apical and equatorial domains in the same GroEL subunits (23). This GroEL can bind ATP and denatured protein but fails to process further reaction steps such as ATP hydrolysis, GroES binding, and release of substrate protein. We report here the opposite version; open conformation-specific inter-subunit cross-links were introduced into the GroEL ring. Using this cross-linking as a probe of open conformation, we found that one ring was open in ADP (GroELO), although two rings were open in ATP (GroELOO). The isolated GroELO and GroELOO, which were nucleotide-free, formed a stable bullet and football complex with GroES even in the absence of any nucleotide. These results support a GroEL mechanism that includes a football complex as a critical intermediate.  相似文献   

3.
Two new 2-D crystal forms of the Escherichia coli chaperone GroEL (cpn60) 2 × 7-mer have been produced using the negative staining-carbon film (NS-CF) technique. These 2-D crystals, which contain the cylindrical GroEL in side-on and end-on orientations, both possess p21 symmetry, with two molecules in the respective unit cells. The crystallographically averaged images correlate well with those obtained by other authors from single particle analysis of GroEL and our own previous crystallographic analysis. 2-D crystallization of the smaller chaperone GroES (cpn10) 7-mer has also been achieved using the NS-CF technique. Crystallographically averaged images of GroES single particle images indicate considerable variation in molecular shape, which is most likely due to varying molecular orientation on the carbon support film. The quaternary structure of GroES does, nevertheless, approximate to a ring-like shape. The complex formed by GroEL and GroES in the presence of ATP at room temperature has been shown to possess a symmetrical hollow ellipsoidal conformation. This symmetrical complex forms in the presence of a 2:1 or greater molar ratio of GroES:GroEL. At lower molar ratios linear chains of GroEL form, apparently linked by GroES in a 1:1 manner, which provide supportive evidence for the ability of both ends of the GroEL cylinder to interact with GroES. The apparent discrepancy between our data and that of other groups who have described an asymmetrical "bullet-shaped" (holo-chaperone) GroEL/ES complex is discussed in detail.  相似文献   

4.
Small-angle neutron scattering and contrast variation were used to study the solution structure of GroEL and GroEL/GroES chaperonins complexed with a nonnative variant of the polypeptide substrate, subtilisin (PJ9). The subtilisin was 86% deuterated (dPJ9) so that it contrasted sufficiently with the chaperonin, allowing the contrast variation technique to be used to separate the scattering from the two components bound in the complex. Both the native double-ring GroEL and a single-ring mutant were used with dPJ9 bound in a 1:1 stoichiometry per GroEL toroid. This allowed both the position and the shape of dPJ9 in the GroEL/dPJ9 complexes to be determined. A single-ring GroEL/GroES variant complexed with one dPJ9 molecule was used to study the structural changes of dPJ9 in GroEL/GroES/dPJ9 complexes formed with ADP and with ATP. It was found that both the shape and the position of the bound dPJ9 in the GroEL/GroES/dPJ9 complex with ADP were the same as those in the GroEL/dPJ9 complex. However, dPJ9 assumed a more symmetric shape when bound in the GroEL/GroES/dPJ9 complex with ATP. This important observation reflects the relative ability of ATP to promote refolding of protein substrates relative to that of ADP.  相似文献   

5.
GroEL is an essential Escherichia coli molecular chaperon that uses ATP to facilitate correct folding of a range of proteins in a cell. Central to the GroEL substrate diversity is how GroEL recognizes the substrates. The interaction between GroEL and substrate has been proposed to be largely hydrophobic because GroEL interacts with proteins in non-native conformations but not in native forms. Analysis of GroEL substrate proteins reveals that one of its main substrates are proteins with αβ folding domains, suggesting that GroEL may stabilize the collapsed αβ core by binding to hydrophobic surfaces that are usually buried between the α and β elements. In this study, we characterize the interaction between GroEL and a peptide derived from our previous selection via a phage display method. NMR studies map the peptide-binding site to the region containing Helices H and I, which is consistent with evidence that this region comprises the primary substrate-binding site. The peptide is largely unstructured in solution but adopts a helical conformation when bound to the GroEL apical domain with a moderate affinity (Kd = 17.1 ± 2.5 μm). The helical conformation aligns residues to form an amphipathic structure, and the hydrophobic side of this amphipathic helix interacts with GroEL as suggested by fluorescence quenching studies. Together with previous structural studies on the GroEL-peptide complexes, our work supports the notion that the amphipathic secondary elements in the substrate proteins may be the structural motif recognized by GroEL.The bacterial chaperonin GroEL and its co-chaperonin GroES are essential for cell viability by assisting folding of a wide range of proteins via an ATP-dependent mechanism (13). Structurally, fourteen 57-kDa GroEL subunits assemble into two back-to-back stacking heptameric rings, giving rise to two functionally independent central cavities (4). Each GroEL subunit folds into three distinctive domains: equatorial domain, intermediate domain, and apical domain. The equatorial domains contain the ATP-binding sites and provide most of the intra-ring interactions and all the inter-ring interactions. The apical domains form the rims of the central cavities and contain the binding sites for the substrate proteins and GroES. The intermediate domains link the apical domains and the equatorial domains. For the co-chaperonin GroES, seven GroES subunits, of 10 kDa each, assemble into a heptamer ring (5, 6). In forming the GroEL-GroES complex, GroES caps one end of GroEL, and large structural changes are observed in both GroEL and GroES (7). In GroEL, the apical domain is rotated 90° along its axis and 60° upwards, and the intermediate domain is closed down ∼25° to the equatorial domain. A loop in GroES (residues 17–33) that is unstructured in the isolated GroES adopts a β-turn structure and forms contact with the GroEL apical domain. Compared with the unliganded GroEL, the volume of the enclosed GroEL-GroES cavity is doubled, and the surface lining the wall of the GroEL cavity changes from hydrophobic to hydrophilic.A wealth of information derived from both intensive biochemical and structural characterizations has revealed a general role of GroEL-GroES in assisting protein folding (see reviews in Refs. 3, 8, and 9). Briefly, GroEL binds the substrate proteins in their aggregation-prone non-native states, preventing them from aggregating. Binding of ATP to the substrate occupied GroEL ring (cis-ring) presumably induces large conformational change in GroEL that promotes binding of GroES to the cis-ring. As a result of ATP and GroES binding, the substrate protein is displaced into the GroEL central cavity, initiating the folding process. Both hydrolysis of ATP in the cis-ring and binding of ATP to the substrate unoccupied ring (trans ring) weaken the GroES-GroEL interaction, and ATP binding to the trans ring results in the dissociation of GroES from GroEL, releasing substrate from the central cavity of GroEL. The released substrate may continue folding into the native state if in a folding competent state or may rebind to GroEL if it is still misfolded.One of the most intriguing aspects of the GroE-assisted folding is the substrate promiscuity. It has been shown that about 300 Escherichia coli proteins can interact with GroEL, and these proteins are diverse in terms of both structures and functions (10). A range of techniques have been applied to investigate this important yet complex aspect, and salient features regarding GroEL-substrate interactions have emerged. The apical domains, on the rim of the GroEL central cavity, contain the main substrate-binding site (1113). Structural flexibility, reflected by both high temperature factors of the apical domain in the crystal structure of tetradecameric GroEL (14) and conformational multiplicity around Helix H and I (15), is proposed to account for the diverse spectrum of GroEL substrates. Mutational studies on GroEL suggest that the GroEL-substrate interactions are largely hydrophobic (16). Structural study on GroEL-substrate interaction, however, is hindered mainly because of the multiple conformations of the bound substrate protein. Very recently, NMR techniques have been used to directly investigate the bound conformations of the substrate (17, 18); yet the nature of GroEL-substrate interaction is not revealed. Peptides may mimic segments of substrate proteins, and studies of GroEL-peptide interactions have uncovered detailed intermolecular interactions and provided insights into principles of substrate recognition by GroEL. The bound peptides may adopt α-helix (1923), β-hairpin (15), or extended conformations (24), and despite different conformations, they all appear to bind to Helix H and I of GroEL. Hydrophobic interaction dominates the interface between GroEL and peptides in either β-hairpin or extended structures and is proposed so between GroEL and α-helical peptides. These detailed structural characterizations on GroEL-peptide interactions have contributed to dissecting the complex nature of the substrate recognition by GroEL (25).We previously identified a high affinity peptide (strong binding peptide (SBP))2 for GroEL using a phage display method and found that SBP adopts a β-hairpin structure bound to GroEL (15, 26). To investigate the contribution of the β-turn in SBP to the GroEL-SBP interaction, we have created various SBP variants with the intension to disrupt the β-turn structure and have studied their binding to GroEL. One of the peptides (termed SBP-W2DP6V), however, adopts a helical conformation when bound to GroEL by NMR analysis. NMR results also map the peptide-binding site on GroEL to be a region formed by Helix H and I. The helical peptide has an amphipathic feature, and fluorescence studies provide direct evidence that the hydrophobic face is involved in the interaction with GroEL. Our structural analysis, combined with previous studies, suggests that GroEL recognizes the amphipathic property in the secondary structures of the substrate protein and binds preferably to the hydrophobic side of these structural elements to stabilize and preserve their structures.  相似文献   

6.
Large rigid-body domain movements are critical to GroEL-mediated protein folding, especially apical domain elevation and twist associated with the formation of a folding chamber upon binding ATP and co-chaperonin GroES. Here, we have modeled the anisotropic displacements of GroEL domains from various crystallized states, unliganded GroEL, ATPgammaS-bound, ADP-AlFx/GroES-bound, and ADP/GroES bound, using translation-libration-screw (TLS) analysis. Remarkably, the TLS results show that the inherent motions of unliganded GroEL, a polypeptide-accepting state, are biased along the transition pathway that leads to the folding-active state. In the ADP-AlFx/GroES-bound folding-active state the dynamic modes of the apical domains become reoriented and coupled to the motions of bound GroES. The ADP/GroES complex exhibits these same motions, but they are increased in magnitude, potentially reflecting the decreased stability of the complex after nucleotide hydrolysis. Our results have allowed the visualization of the anisotropic molecular motions that link the static conformations previously observed by X-ray crystallography. Application of the same analyses to other macromolecules where rigid body motions occur may give insight into the large scale dynamics critical for function and thus has the potential to extend our fundamental understanding of molecular machines.  相似文献   

7.
We have developed an angular refinement procedure incorporating correction for the microscope contrast transfer function, to determine cryoelectron microscopy (cryo-EM) structures of the Escherichia coli chaperonin GroEL in its apo and ATP-bound forms. This image reconstruction procedure is verified to 13-A resolution by comparison of the cryo-EM structure of unliganded GroEL with the crystal structure. Binding, encapsulation, and release of nonnative proteins by GroEL and its cochaperone GroES are controlled by the binding and hydrolysis of ATP. Seven ATP molecules bind cooperatively to one heptameric ring of GroEL. This binding causes long-range conformational changes that determine the orientations of remote substrate-binding sites, and it also determines the conformation of subunits in the opposite ring of GroEL, in a negatively cooperative mechanism. The conformation of GroEL-ATP was determined at approximately 15-A resolution. In one ring of GroEL-ATP, the apical (substrate-binding) domains are extremely disordered, consistent with the high mobility needed for them to achieve the 60 degrees elevation and 90 degrees twist of the GroES-bound state. Unexpectedly, ATP binding also increases the separation between the two rings, although the interring contacts are present in the density map.  相似文献   

8.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists in protein folding with the aid of GroES and ATP. It is believed that GroEL alternates the folding-active rings and that the substrate protein (and GroES) can bind to the open trans-ring only after ATP in the cis-ring is hydrolyzed. However, we found that a substrate protein prebound to the trans-ring remained bound during the first ATP cycle, and this substrate was assisted by GroEL-GroES when the second cycle began. Moreover, a slow ATP-hydrolyzing GroEL mutant (D398A) in the ATP-bound form bound a substrate protein and GroES to the trans-ring. The apparent discrepancy with the results from an earlier study (Rye, H. S., Roseman, A. M., Chen, S., Furtak, K., Fenton, W. A., Saibil, H. R., and Horwich, A. L. (1999) Cell 97, 325-338) can be explained by the previously unnoticed fact that the ATP-bound form of the D398A mutant exists as a symmetric 1:2 GroEL-GroES complex (the "football"-shaped complex) and that the substrate protein (and GroES) in the medium is incorporated into the complex only after the slow turnover. In light of these results, the current model of the GroEL-GroES reaction cycle via the asymmetric 1:1 GroEL-GroES complex deserves reexamination.  相似文献   

9.
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼150 h (∼6 days), providing a good model to characterize the football-shaped complex.  相似文献   

10.
The function of GroE requires a complex system of allosteric communication driven by protein-nucleotide interactions. These rearrangements couple the binding and hydrolysis of ATP to an overall reaction cycle in which substrate proteins are bound, encapsulated and released. Positive cooperativity with respect to ATP binding occurs within one heptameric ring of GroEL, while negative cooperativity between the two rings generates an inherent asymmetry between the two rings. A previously engineered mutant of GroEL in which the ring-ring contacts are broken gives rise to a single-ring version of the wild-type chaperonin (SR1). We have studied the kinetics of the nucleotide-induced conformational changes in a single-tryptophan variant of SR1 (Y485W-SR1) and compared the resulting data with those we reported previously for the double-ring, single-tryptophan variant of wild-type GroEL (Y485W-GroEL). Remarkably, the parting of the rings does not have a major effect on the conformational changes occurring within the heptameric ring and a kinetic model is presented to describe the sequence of structural rearrangements that occur upon ATP binding to the SR1 molecule. The observation that both the ATP-induced and ADP-induced conformational rearrangements occur more rapidly in the SR1 than they do in wild-type GroEL, indicates that intra-ring conformational changes in the double-ring structure must overcome conformational constraints provided by the presence of the second ring. Lastly, the data presented here imply a role for inter-ring allostery in controlling the dissociation-association behaviour of the GroES co-protein in the overall reaction cycle.  相似文献   

11.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

12.
Binding and folding of substrate proteins by the molecular chaperone GroEL alternates between its two seven-membered rings in an ATP-regulated manner. The association of ATP and GroES to a polypeptide-bound ring of GroEL encapsulates the folding proteins in the central cavity of that ring (cis ring) and allows it to fold in a protected environment where the risk of aggregation is reduced. ATP hydrolysis in the cis ring changes the potentials within the system such that ATP binding to the opposite (trans) ring triggers the release of all ligands from the cis ring of GroEL through a complex network of allosteric communication between the rings. Inter-ring allosteric communication thus appears indispensable for the function of GroEL, and an engineered single-ring version (SR1) cannot substitute for GroEL in vivo. We describe here the isolation and characterisation of an active single-ring form of the GroEL protein (SR-A92T), which has an exceptionally low ATPase activity that is strongly stimulated by the addition of GroES. Dissection of the kinetic pathway of the ATP-induced structural changes in this active single ring can be explained by the fact that the mutation effectively blocks progression through the full allosteric pathway of the GroEL reaction cycle, thus trapping an early allosteric intermediate. Addition of GroES is able to overcome this block by binding this intermediate and pulling the allosteric pathway to completion via mass action, explaining how bacterial cells expressing this protein as their only chaperonin are viable.  相似文献   

13.
The GroEL/GroES chaperonin folding chamber is an encapsulated space of ∼65 Å diameter with a hydrophilic wall, inside of which many cellular proteins reach the native state. The question of whether the cavity wall actively directs folding reactions or is playing a passive role has been open. We review past and recent observations and conclude that the chamber functions as a passive “Anfinsen cage” that prevents folding monomers from multimolecular aggregation.  相似文献   

14.
Conformational changes are known to play a crucial role in the function of the bacterial GroE chaperonin system. Here, results are presented from an essential dynamics analysis of known experimental structures and from computer simulations of GroEL using the CONCOORD method. The results indicate a possible direct form of inter-ring communication associated with internal fluctuations in the nucleotide-binding domains upon nucleotide and GroES binding that are involved in the allosteric mechanism of GroEL. At the level of conformational transitions in entire GroEL rings, nucleotide-induced structural changes were found to be distinct and in principle uncoupled from changes occurring upon GroES binding. However, a coupling is found between nucleotide-induced conformational changes and GroES-mediated transitions, but only in simulations of GroEL double rings, and not in simulations of single rings. This provides another explanation for the fact that GroEL functions a double ring system.  相似文献   

15.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

16.
Determining the network of residues that transmit allosteric signals is crucial to understanding the function of biological nanomachines. During the course of a reaction cycle, biological machines in general, and Escherichia coli chaperonin GroEL in particular, undergo large-scale conformational changes in response to ligand binding. Normal mode analyses, based on structure-based coarse-grained models where each residue is represented by an α carbon atom, have been widely used to describe the motions encoded in the structures of proteins. Here, we propose a new Cα-side chain elastic network model of proteins that includes information about the physical identity of each residue and accurately accounts for the side-chain topology and packing within the structure. Using the Cα-side chain elastic network model and the structural perturbation method, which probes the response of a local perturbation at a given site at all other sites in the structure, we determine the network of key residues (allostery wiring diagram) responsible for the T → R and R″ → T transitions in GroEL. A number of residues, both within a subunit and at the interface of two adjacent subunits, are found to be at the origin of the positive cooperativity in the ATP-driven T → R transition. Of particular note are residues G244, R58, D83, E209, and K327. Of these, R38, D83, and K327 are highly conserved. G244 is located in the apical domain at the interface between two subunits; E209 and K327 are located in the apical domain, toward the center of a subunit; R58 and D83 are equatorial domain residues. The allostery wiring diagram shows that the network of residues are interspersed throughout the structure. Residues D83, V174, E191, and D359 play a critical role in the R″ → T transition, which implies that mutations of these residues would compromise the ATPase activity. D83 and E191 are also highly conserved; D359 is moderately conserved. The negative cooperativity between the rings in the R″ → T transition is orchestrated through several interface residues within a single ring, including N10, E434, D435, and E451. Signal from the trans ring that is transmitted across the interface between the equatorial domains is responsible for the R″ → T transition. The cochaperonin GroES plays a passive role in the R″ → T transition. Remarkably, the binding affinity of GroES for GroEL is allosterically linked to GroEL residues 350-365 that span helices K and L. The movements of helices K and L alter the polarity of the cavity throughout the GroEL functional cycle and undergo large-scale motions that are anticorrelated with the other apical domain residues. The allostery wiring diagrams for the T → R and R″ → T transitions of GroEL provide a microscopic foundation for the cooperativity (anticooperativity) within (between) the ring (rings). Using statistical coupling analysis, we extract evolutionarily linked clusters of residues in GroEL and GroES. We find that several substrate protein binding residues as well as sites related to ATPase activity belong to a single functional network in GroEL. For GroES, the mobile loop residues and GroES/GroES interface residues are linked.  相似文献   

17.
The chaperonin GroEL consists of a double-ring structure made of identical subunits and displays unusual allosteric properties caused by the interaction between its constituent subunits. Cooperative binding of ATP to a protein ring allows binding of GroES to that ring, and at the same time negative inter-ring cooperativity discharges the ligands from the opposite ring, thus driving the protein-folding cycle. Biochemical and electron microscopy analysis of wild type GroEL, a single-ring mutant (SR1), and two mutants with one inter-ring salt bridge of the chaperonin disrupted (E461K and E434K) indicate that these ion pairs form part of the interactions that allow the inter-ring allosteric signal to be transmitted. The wild type-like activities of the ion pair mutants at 25 degrees C are in contrast with their lack of inter-ring communication and folding activity at physiological temperatures. These salt bridges stabilize the inter-ring interface and maintain the inter-ring spacing so that functional communication between protein heptamers takes place. The characterization of GroEL hybrids containing different amounts of wild type and mutant subunits also indicates that as the number of inter-ring salt bridges increases the functional properties of the hybrids recover. Taken together, these results strongly suggest that inter-ring salt bridges form a stabilizing ring-shaped, ionic zipper that ensures inter-ring communication at the contact sites and therefore a functional protein-folding cycle. Furthermore, they regulate the chaperonin thermostat, allowing GroEL to distinguish physiological (37 degrees C) from stress temperatures (42 degrees C).  相似文献   

18.
The projection structures of complex I and the I + III2 supercomplex from the C4 plant Zea mays were determined by electron microscopy and single particle image analysis to a resolution of up to 11 Å. Maize complex I has a typical L-shape. Additionally, it has a large hydrophilic extra-domain attached to the centre of the membrane arm on its matrix-exposed side, which previously was described for Arabidopsis and which was reported to include carbonic anhydrase subunits. A comparison with the X-ray structure of homotrimeric γ-carbonic anhydrase from the archaebacterium Methanosarcina thermophila indicates that this domain is also composed of a trimer. Mass spectrometry analyses allowed to identify two different carbonic anhydrase isoforms, suggesting that the γ-carbonic anhydrase domain of maize complex I most likely is a heterotrimer. Statistical analysis indicates that the maize complex I structure is heterogeneous: a less-abundant “type II” particle has a 15 Å shorter membrane arm and an additional small protrusion on the intermembrane-side of the membrane arm if compared to the more abundant “type I” particle. The I + III2 supercomplex was found to be a rigid structure which did not break down into subcomplexes at the interface between the hydrophilic and the hydrophobic arms of complex I. The complex I moiety of the supercomplex appears to be only of “type I”. This would mean that the “type II” particles are not involved in the supercomplex formation and, hence, could have a different physiological role.  相似文献   

19.
Molecular chaperones are a special class of heat shock proteins (Hsp) that assist the folding and formation of the quaternary structure of other proteins both in vivo and in vitro. However, some chaperones are complex oligomeric proteins, and one of the intriguing questions is how the chaperones fold. The representatives of the Escherichia coli chaperone system GroEL (Hsp60) and GroES (Hsp10) have been studied most intensively. GroEL consists of 14 identical subunits combined into two interacting ring-like structures of seven subunits each, while the co-chaperone GroES interacting with GroEL consists of seven identical subunits combined into a dome-like oligomeric structure. In spite of their complex quaternary structure, GroEL and GroES fold well both in vivo and in vitro. However, the specific oligomerization of GroEL subunits is dependent on ligands and external conditions. This review analyzes the literature and our own data on the study of unfolding (denaturation) and refolding (renaturation) processes of these molecular chaperones and the effect of ligands and solvent composition. Such analysis seems to be useful for understanding the folding mechanism not only of the GroEL/GroES complex, but also of other oligomeric protein complexes.  相似文献   

20.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号