首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.

Background  

Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The enteric bacterium Serratia marcescens is an opportunistic human pathogen. The strain ATCC39006 makes the red pigment, prodigiosin (Pig), and the β-lactam antibiotic carbapenem (Car). Mutants were isolated that were concomitantly defective for Pig and Car production. These mutants were found to have a mutation in the rap gene (regulation of antibiotic and pigment). Sequence analysis of the rap gene revealed a predicted protein product showing strong homology to SlyA, originally thought to be a haemolytic virulence determinant in Salmonella typhimurium. Homologues of rap were detected in several bacterial genera, including Salmonella, Yersinia, Enterobacter , and species of the plant pathogen, Erwinia. The Erwinia horEr (homologue of rap ) and the Yersinia horYe genes were also found to be very similar to rap and slyA. Marker exchange mutagenesis of horEr revealed that it encoded a regulatory protein controlling the production of antibiotic and exoenzyme virulence determinants in the phytopathogen, Erwinia carotovora subspecies carotovora. We have shown that these new homologues of SlyA form a highly conserved subgroup of a growing superfamily of bacterial regulatory proteins controlling diverse physiological processes in human, animal and plant pathogens.  相似文献   

9.
The prodigiosin biosynthetic gene cluster (pig cluster) of Serratia marcescens ATCC 274 (Sma 274) is flanked by cueR/copA homologues. Inactivation of the copA homologue resulted in an increased sensitivity to copper, confirming that CopA is involved in copper homeostasis in Sma 274. The effect of copper on the biosynthesis of prodigiosin in Sma 274 and the copA mutant strain was investigated. Increased levels of copper were found to reduce prodigiosin production in the wild type Sma 274, but increase production in the copA mutant strain. The physiological implications for CopA mediated prodigiosin production are discussed. We also demonstrate that the gene products of pigB–pigE of Sma 274 are sufficient for the biosynthesis of 2-methyl-3-n-amyl-pyrrole and condensation with 4-methoxy-2,2′-bipyrrole-5-carboxyaldehyde to form prodigiosin, as we have shown for Serratia sp. ATCC 39006.  相似文献   

10.
11.
Carbapenem antibiotics are members of the beta-lactam family of antibiotics, the most important class of antibiotics currently in clinical use. They are active against many important Gram-positive and Gram-negative pathogens. One important feature of carbapenem antibiotics is their resistance to several beta-lactamases. Thienamycin, isolated from Streptomyces cattleya, was the first carbapenem described. Other well-studied carbapenems were isolated from the Gram-negative bacteria Erwinia carotovora subsp. carotovora, Serratia sp. strain ATCC39006 and Photorhabdus luminescens strain TT01. Here, we review the genetics and biochemistry of carbapenem production in these bacteria. Research into carbapenems could uncover a new repertoire of bioactive molecules and biosynthetic enzymes, and exploiting these novel enzymes could lead to development of new classes of antibiotics with useful chemotherapeutic activities.  相似文献   

12.
13.
Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, Serratia sp. ATCC 39006 ( S39006 ). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006 , identifying how this differs from the archaeon Halobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in Escherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E. coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain.  相似文献   

14.
15.
16.
17.

Background

Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity.

Results

We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99 % sequence identity in rDNA sequence and orthology across 85.6 % of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8 %) were present in Serratia while 33 (84.6 %) and 35 (89 %) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively.

Conclusion

The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result – killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1697-8) contains supplementary material, which is available to authorized users.  相似文献   

18.
沙雷氏菌(Serratia)是一类重要的生防菌,能分泌多种抗生性代谢产物,如灵菌红素、脂肽、碳青霉烯、几丁质酶、异硫霉素、硝吡咯菌素、水解酶、大环内酯类抗生素、嗜铁素等,从而抑制不同植物病原真菌的生长。总结了沙雷氏菌中已报道的抗生性次级代谢产物生物合成机制,重点阐述了次生代谢产物的功能、合成途径等的新进展,同时对沙雷氏菌在生物防治中的应用和其作为生防菌剂的前景进行展望。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号