首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the μ-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the μ-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the μ-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.  相似文献   

2.
The genomes of myonecrotic strains of Clostridium perfringens encode a large number of secreted glycoside hydrolases. The activities of these enzymes are consistent with degradation of the mucosal layer of the human gastrointestinal tract, glycosaminoglycans and other cellular glycans found throughout the body. In many cases this is thought to aid in the propagation of the major toxins produced by C. perfringens. One such example is the family 84 glycoside hydrolases, which contains five C. perfringens members (CpGH84A-E), each displaying a unique modular architecture. The smallest and most extensively studied member, CpGH84C, comprises an N-terminal catalytic domain with β-N-acetylglucosaminidase activity, a family 32 carbohydrate-binding module, a family 82 X-module (X82) of unknown function, and a fibronectin type-III-like module. Here we present the structure of the X82 module from CpGH84C, determined by both NMR spectroscopy and X-ray crystallography. CpGH84C X82 adopts a jell-roll fold comprising two β-sheets formed by nine β-strands. CpGH84C X82 displays distant amino acid sequence identity yet close structural similarity to the cohesin modules of cellulolytic anaerobic bacteria. Cohesin modules are responsible for the assembly of numerous hydrolytic enzymes in a cellulose-degrading multi-enzyme complex, termed the cellulosome, through a high-affinity interaction with the calcium-binding dockerin module. A planar surface is located on the face of the CpGH84 X82 structure that corresponds to the dockerin-binding region of cellulolytic cohesin modules and has the approximate dimensions to accommodate a dockerin module. The presence of cohesin-like X82 modules in glycoside hydrolases of C. perfringens is an indication that the formation of novel X82-dockerin mediated multi-enzyme complexes, with potential roles in pathogenesis, is possible.  相似文献   

3.
The genomes of myonecrotic Clostridium perfringens isolates contain genes encoding a large and fascinating array of highly modular glycoside hydrolase enzymes. Although the catalytic activities of many of these enzymes are somewhat predictable based on their amino acid sequences, the functions of their abundant ancillary modules are not and remain poorly studied. Here, we present the structural and functional analysis of a new family of ancillary carbohydrate-binding modules (CBMs), CBM51, which was previously annotated in data bases as the novel putative CBM domain. The high resolution crystal structures of two CBM51 members, GH95CBM51 and GH98CBM51, from a putative family 95 alpha-fucosidase and from a family 98 blood group A/B antigen-specific endo-beta-galactosidase, respectively, showed them to have highly similar beta-sandwich folds. However, GH95CBM51 was shown by glycan microarray screening, isothermal titration calorimetry, and x-ray crystallography to bind galactose residues, whereas the same analyses of GH98CBM51 revealed specificity for the blood group A/B antigens through non-conserved interactions. Overall, this work identifies a new family of CBMs with many members having apparent specificity for eukaryotic glycans, in keeping with the glycan-rich environment C. perfringens would experience in its host. However, a wider bioinformatic analysis of this CBM family also indicated a large number of members in non-pathogenic environmental bacteria, suggesting a role in the recognition of environmental glycans.  相似文献   

4.
Many carbohydrate-active enzymes have complex architectures comprising multiple modules that may be involved in catalysis, carbohydrate binding, or protein-protein interactions. Carbohydrate-binding modules (CBMs) are a common ancillary module whose function is to promote the adherence of the complete enzyme to carbohydrate substrates. CBM family 32 has been proposed to be one of the most diverse CBM families classified to date, yet all of the structurally characterized CBM32s thus far recognize galactose-based ligands. Here, we report a unique binding specificity and mode of ligand binding for a family 32 CBM. NagHCBM32-2 is one of four CBM32 modules in NagH, a family 84 glycoside hydrolase secreted by Clostridium perfringens. NagHCBM32-2 has the β-sandwich scaffold common to members of the family; however, its specificity for N-acetylglucosamine is unusual among CBMs. X-ray crystallographic analysis of the module at resolutions from 1.45 to 2.0 Å and in complex with disaccharides reveals that its mode of sugar recognition is quite different from that observed for galactose-specific CBM32s. This study continues to unravel the diversity of CBMs found in family 32 and how these CBMs might impart the carbohydrate-binding specificity to the extracellular glycoside hydrolases in C. perfringens.  相似文献   

5.
A family of Clostridium perfringens glycoside hydrolases (CpGH84A-E), with a conserved family 84 catalytic module, are thought to target the gastric mucosal layer. Chemical shift assignments have been completed for a putative protein-protein interaction X82 module from CpGH84C.  相似文献   

6.
Boraston AB  Ficko-Blean E  Healey M 《Biochemistry》2007,46(40):11352-11360
Myonecrotic isolates of Clostridium perfringens secrete multimodular sialidases, often termed "large sialidases", that contribute to the virulence of this bacterium. NanJ is the largest of the two secreted sialidases at 1173 amino acids and comprises 6 different modules which are, from the N-terminus, a family 32 carbohydrate binding module (CBM), a family 40 CBM, a family 33 glycoside hydrolase, a module of unknown function, a family 82 "X-module" of unknown function, and a module with amino acid similarity to fibronectin type III domains. The hydrolase activity of clostridial sialidases is quite well documented; however, the functions of their accessory domains are entirely uninvestigated. Here we describe the carbohydrate binding activity of the isolated family 32 CBM (CBM32) and the isolated family 40 CBM (CBM40). CBM32 is shown to bind galactose or N-acetylgalactosamine, while CBM40 is sialic acid specific, though both CBMs appear to bind with very low affinities. The crystal structure of CBM32 was determined at 2.25 A in complex with galactose. This revealed what appears to be a very simple galactose binding site. The crystal structure of CBM40 was determined at 2.20 A in complex with a sialic acid containing molecule that it fortuitously crystallized with, revealing the molecular details of the CBM40-sialic acid interaction. Overall, the results indicate that NanJ contains carbohydrate specific binding modules that likely function to target the enzyme to molecules or cells bearing mixed populations of glycans that terminate in either galactose/N-acetylgalactosamine or sialic acid.  相似文献   

7.
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.  相似文献   

8.
Glycoside hydrolase (GH) family 13 comprises about 30 different specificities. Four of them have been proposed to form the GH13 pullulanase subfamily: pullulanase, isoamylase, maltooligosyl trehalohydrolase and branching enzyme forming the seven CAZy GH13 subfamilies: GH13 8-GH13 14. Recently, a new family of carbohydrate-binding modules (CBMs), the family CBM48 has been established containing the putative starch-binding domains from the pullulanase subfamily, the β-subunit of AMP-activated protein kinase and some other GH13 enzymes with pullulanase and/or α-amylase-pullulanase specificity. Since all of these enzymes are multidomain proteins and the structure for at least one representative of each enzyme specificity has already been determined, the main goal of the present study was to elucidate domain evolution within this GH13 pullulanase subfamily (84 real enzymes) focusing on the CBM48 module. With regard to CBM48 positioning in the amino acid sequence, the N-terminal end of a protein appears to be a predominant position. This is especially true for isoamylases and maltooligosyl trehalohydrolases. Secondary structure-based alignment of CBM modules from CBM48, CBM20 and CBM21 revealed that several residues known as consensus for CBM20 and CBM21 could also be identified in CBM48, but only branching enzymes possess the aromatic residues that correspond with the two tryptophans forming the evolutionary conserved starch-binding site 1 in CBM20. The evolutionary trees constructed for the individual domains, complete alignment, and the conserved sequence regions of the α-amylase family were found to be comparable to each other (except for the C-domain tree) with two basic parts: (i) branching enzymes and maltooligosyl trehalohydrolases; and (ii) pullulanases and isoamylases. Taxonomy was respected only within clusters with pure specificity, i.e. the evolution of CBM48 reflects the evolution of specificities rather than evolution of species. This is a feature different from the one observed for the starch-binding domain of the family CBM20 where the starch-binding domain evolution reflects the evolution of species.  相似文献   

9.
Starch binding domains (SBDs) are able to bind to and facilitate the degradation of raw starch and starchy substrates. In general, in the CAZy database they have been classified among the carbohydrate-binding module (CBM) families. The two families CBM25 and CBM26 together with families CBM20, 21, 34, 41, 45, 48, 53, 58, 68 and 69 belong to twelve SBD CAZy families. They represent a group of closely related modules exhibiting some sequence similarity, although each of the two families possesses its own features. Both CBM25 and CBM26 adopt a typical SBD fold of distorted β-barrel as recognized in the modules present in the maltohexaose-producing amylase from Bacillus halodurans. With regard to catalytic domains, most members are α-amylases and maltooligosaccharide-producing amylases from the α-amylase glycoside hydrolase (GH) family GH13, but also some β-amylases (GH14) and hypothetical proteins (e.g. from the family GH31) are known. The main goal of this review was to compare the available amino acid sequences of SBDs from both families CBM25 and CBM26 and to reveal, if possible, SBD(s) with the character “intermediary” between the CBM25 and CBM26. Emphasis was also given on a structural comparison of the identified intermediary SBD with the CBM25 and CBM26 representatives and a detailed evolutionary division of both CBM families that can be utilized for defining the future subfamilies.  相似文献   

10.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   

11.
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.  相似文献   

12.
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endohemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thiolinkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.  相似文献   

13.
Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein kinase SNF1 complex, and an adaptor-regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences and tertiary structures of CBM20 and CBM48 reveals the close relatedness of these SBDs and, in some cases, glycogen-binding domains (GBDs). The families CBM20 and CBM48 share both an ancestral form and the mode of starch/glycogen binding at one or two binding sites. Phylogenetic analyses demonstrate that they exhibit independent behaviour, i.e. each family forms its own part in an evolutionary tree, with enzyme specificity (protein function) being well represented within each family. The distinction between CBM20 and CBM48 families is not sharp since there are representatives in both CBM families that possess an intermediate character. These are, for example, CBM20s from hypothetical GH57 amylopullulanase (probably lacking the starch-binding site 2) and CBM48s from the GH13 pullulanase subfamily (probably lacking the starch/glycogen-binding site 1). The knowledge gained concerning the occurrence of these SBDs and GBDs through the range of taxonomy will support future experimental research.  相似文献   

14.
The TIGR4 and SP3-BS71 strains of Streptococcus pneumoniae each produce family 98 glycoside hydrolases, called Sp4GH98 and Sp3GH98, respectively, which have different modular architectures and substrate specificities. Sp4GH98 degrades the LewisY antigen and possesses three C-terminal family 47 carbohydrate-binding modules (CBMs) that bind to this substrate. Sp3GH98 degrades the blood group A/B antigens and has two N-terminal family 51 CBMs that are of unknown function. Here, we examine the complex carbohydrate-binding specificity of the family 51 CBMs from Sp3GH98 (referred to as CBM51-1 and CBM51-2), the structural basis of this interaction, and the overall solution conformations of both Sp3GH98 and Sp4GH98, which are shown to be fully secreted proteins. Through glycan microarray binding analysis and isothermal titration calorimetry, CBM51-1 is found to bind specifically to the blood group A/B antigens. However, due to a series of relatively small structural rearrangements that were revealed in structures determined by X-ray crystallography, CBM51-2 appears to be incapable of binding carbohydrates. Analysis of small-angle X-ray scattering data in combination with the available high-resolution X-ray crystal structures of the Sp3GH98 and Sp4GH98 catalytic modules and their CBMs yielded models of the biological solution structures of the full-length enzymes. These studies reveal the complex architectures of the two enzymes and suggest that carbohydrate recognition by the CBMs and the activity of the catalytic modules are not directly coupled.  相似文献   

15.
Family 32 carbohydrate-binding modules (CBM32s) are found in a diverse group of microorganisms, including archea, eubacteria, and fungi. Significantly, many members of this family belong to plant and animal pathogens where they are likely to play a key role in enzyme toxin targeting and function. Indeed, ligand targets have been shown to range from insoluble plant cell wall polysaccharides to complex eukaryotic glycans. Besides a potential direct involvement in microbial pathogenesis, CBM32s also represent an important family for the study of CBM evolution due to the wide variety of complex protein architectures that they are associated with. This complexity ranges from independent lectin-like proteins through to large multimodular enzyme toxins where they can be present in multiple copies (multimodularity). Presented here is a rigorous analysis of the evolutionary relationships between available polypeptide sequences for family 32 CBMs within the carbohydrate active enzyme database. This approach is especially helpful for determining the roles of CBM32s that are present in multiple copies within an enzyme as each module tends to cluster into groups that are associated with distinct enzyme classes. For enzymes that contain multiple copies of CBM32s, however, there are differential clustering patterns as modules can either cluster together or in very distant sections of the tree. These data suggest that enzymes containing multiple copies possess complex mechanisms of ligand recognition. By applying this well-developed approach to the specific analysis of CBM relatedness, we have generated here a new platform for the prediction of CBM binding specificity and highlight significant new targets for biochemical and structural characterization.  相似文献   

16.
《FEBS letters》2014,588(9):1726-1730
The family-5 glycoside hydrolase domain (GH5) and the family-32 carbohydrate-binding module (CBM32) of Clostridium thermocellum mannanase CtMan5A, along with their genetically inactivated derivatives, were collectively or separately expressed. Their catalytic and substrate-binding abilities were measured to investigate importance of CBM32 in substrate recognition by CtMan5A. Characterization of the truncated derivatives of CtMan5A and isothermal calorimetry analysis of the interaction between the inactivated proteins and mannooligosaccharides suggested that GH5 and CBM32 collectively formed a substrate-binding site capable of accommodating a mannotetraose unit in CtMan5A. This suggested that CBM32 directly participated in the substrate recognition required for catalytic action.  相似文献   

17.
Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes) in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation) and GH43 (hemicellulose and pectin degradation), and the lyase families PL1, PL3 and PL4 (pectin degradation) but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3′-tag digital gene expression (DGE) reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.  相似文献   

18.
BackgroundGalactose oxidase (GaO) selectively oxidizes the primary hydroxyl of galactose to a carbonyl, facilitating targeted chemical derivatization of galactose-containing polysaccharides, leading to renewable polymers with tailored physical and chemical properties. Here we investigate the impact of a family 29 glucomannan binding module on the activity and binding of GaO towards various polysaccharides. Specifically, CBM29-1-2 from Piromyces equi was separately linked to the N- and C-termini of GaO.ResultsBoth GaO–CBM29 and CBM29–GaO were successfully expressed in Pichia pastoris, and demonstrated enhanced binding to galactomannan, galactoglucomannan and galactoxyloglucan. The position of the CBM29 fusion affected the enzyme function. Particularly, C-terminal fusion led to greatest increases in galactomannan binding and catalytic efficiency, where relative to wild-type GaO, kcat/Km values increased by 7.5 and 19.8 times on guar galactomannan and locust bean galactomannan, respectively. The fusion of CBM29 also induced oligomerization of GaO–CBM29.Major conclusionsSimilar to impacts of cellulose-binding modules associated with cellulolytic enzymes, increased substrate binding impeded the action of GaO fusions on more concentrated preparations of galactomannan, galactoglucomannan and galactoxyloglucan; this was especially true for GaO–CBM29. Given the N-terminal positioning of the native galactose-binding CBM32 in GaO, the varying impacts of N-terminal versus C-terminal fusion of CBM29-1-2 may reflect competing action of neighboring CBMs.General significanceThis study thoroughly examines and discusses the effects of CBM fusion to non-lignocellulytic enzymes on soluble polysaccharides. Herein kinetics of GaO on galactose containing polysaccharides is presented for the first time.  相似文献   

19.
In bacterial cellulase systems, glycoside hydrolase family 9 (GH9) cellulases are generally regarded as the major cellulose-degrading factors besides GH48 exoglucanase. In this study, umcel9A, which was cloned from uncultured microorganisms from compost, with the encoded protein being theme C GH9 cellulase, was heterologously expressed in Escherichia coli, and the biochemical properties of the purified enzyme were characterized. Hydrolysis of carboxylmethylcellulose (CMC) by Umcel9A led to the decreased viscosity of CMC solution and production of reducing sugars. Interestingly, cellobiose was the major product when cellulosic materials were hydrolyzed by Umcel9A. Six representative carbohydrate-binding modules (CBMs) from different CBM families (CBM1, CBM2, CBM3, CBM4, CBM10, and CBM72) were fused with Umcel9A at the natural terminal position, resulting in significant enhancement of the binding capacity of the chimeric enzymes toward four different insoluble celluloses as compared with that of Umcel9A. Catalytic activity of the chimeric enzymes against insoluble celluloses, including phosphoric acid-swollen cellulose (PASC), alkali-pretreated sugarcane bagasse (ASB), filter paper powder (FPP), and Avicel, was higher than that of Umcel9A, except for Umcel9A-CBM3. In these chimeric enzymes, CBM4-Umcel9A exhibited the highest activity toward the four tested insoluble celluloses and displayed 4.2-, 3.0-, 2.4-, and 6.6-fold enhanced activity toward PASC, ASB, FPP, and Avicel, respectively, when compared with that of Umcel9A. CBM4-Umcel9A also showed highest V max and catalytic efficiency (k cat/K M) against PASC. Construction of chimeric enzymes may have potential applications in biocatalytic processes and provides insight into the evolution of the molecular architecture of catalytic module and CBM in GH9 cellulases.  相似文献   

20.
Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号