首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The bacterial phage shock protein (Psp) stress response system is activated by events affecting the cytoplasmic membrane. In response, Psp protein levels increase, including PspA, which has been implicated as the master effector of stress tolerance. Yersinia enterocolitica and related bacteria with a defective Psp system are highly sensitive to the mislocalization of pore-forming secretin proteins. However, why secretins are toxic to psp null strains, whereas some other Psp inducers are not, has not been explained. Furthermore, previous work has led to the confounding and disputable suggestion that PspA is not involved in mitigating secretin toxicity. Here we have established a correlation between the amount of secretin toxicity in a psp null strain and the extent of cytoplasmic membrane permeability to large molecules. This leads to a morphological change resembling cells undergoing plasmolysis. Furthermore, using novel strains with dis-regulated Psp proteins has allowed us to obtain unequivocal evidence that PspA is not required for secretin-stress tolerance. Together, our data suggest that the mechanism by which secretin multimers kill psp null cells is by causing a profound defect in the cytoplasmic membrane permeability barrier. This allows lethal molecular exchange with the environment, which the PspB and PspC proteins can prevent.  相似文献   

3.
4.
The phage-shock-protein (Psp) system responds to extracytoplasmic stress that may reduce the energy status of the cell. It is conserved in many different bacteria and has been linked to several important phenotypes. Escherichia coli psp mutants have defects in maintenance of the proton-motive force, protein export by the sec and tat pathways, survival in stationary phase at alkaline pH, and biofilm formation. Yersinia enterocolitica psp mutants cannot grow when the secretin component of a type III secretion system is mislocalized, and have a severe virulence defect in animals. A Salmonella enterica psp mutation exacerbates some phenotypes of an rpoE null mutant and the psp genes of S. enterica and Shigella flexneri are highly induced during macrophage infection. PspA, the most abundant of the Psp proteins, is required for most of the phenotypes associated with the Psp system. Therefore, PspA is probably an effector that may play a role in maintaining cytoplasmic membrane integrity and/or the proton-motive force. However, PspA is not required for the ability to tolerate secretin mislocalization, which suggests an important physiological role for other Psp proteins. This article summarizes our current understanding of the Psp system: inducing signals, the underlying signal transduction mechanisms, the physiological roles it may play, and a genomic analysis of its conservation.  相似文献   

5.
6.
The phage shock protein (Psp) F regulon response in Escherichia coli is thought to be induced by impaired inner membrane integrity and an associated decrease in proton motive force (pmf). Mechanisms by which the Psp system detects the stress signal and responds have so far remained undetermined. Here we demonstrate that PspA and PspG directly confront a variety of inducing stimuli by switching the cell to anaerobic respiration and fermentation and by down-regulating motility, thereby subtly adjusting and maintaining energy usage and pmf. Additionally, PspG controls iron usage. We show that the Psp-inducing protein IV secretin stress, in the absence of Psp proteins, decreases the pmf in an ArcB-dependent manner and that ArcB is required for amplifying and transducing the stress signal to the PspF regulon. The requirement of the ArcB signal transduction protein for induction of psp provides clear evidence for a direct link between the physiological redox state of the cell, the electron transport chain, and induction of the Psp response. Under normal growth conditions PspA and PspD control the level of activity of ArcB/ArcA system that senses the redox/metabolic state of the cell, whereas under stress conditions PspA, PspD, and PspG deliver their effector functions at least in part by activating ArcB/ArcA through positive feedback.  相似文献   

7.
Phage shock protein (Psp) is induced by extracytoplasmic stress that may reduce the energy status of the cell. It is encoded in Escherichia coli by the phage shock protein regulon consisting of pspABCDE and by pspF and pspG. The phage shock protein system is highly conserved among a large number of gram-negative bacteria. However, many bacterial genomes contain only a pspA homologue but no homologues of the other genes of the Psp system. This conservation indicates that PspA alone might play an important role in these bacteria. In Streptomyces lividans, a soil-borne gram-positive bacterium, the phage shock protein system consists only of the pspA gene. In this report, we showed that pspA encodes a 28-kDa protein that is present in both the cytoplasmic and the membrane fractions of the S. lividans mycelium. We demonstrated that the pspA gene is strongly induced under stress conditions that attack membrane integrity and that it is essential for growth and survival under most of these conditions. The data reported here clearly show that PspA plays an important role in S. lividans under stress conditions despite the absence of other psp homologues, suggesting that PspA may be more important in most bacteria than previously thought.  相似文献   

8.
9.
The phage shock protein (Psp) system found in enterobacteria is induced in response to impaired inner membrane integrity (where the Psp response is thought to help maintain the proton motive force of the cell) and is implicated in the virulence of pathogens such as Yersinia and Salmonella . We provided evidence that the two-component ArcAB system was involved in induction of the Psp response in Escherichia coli and now report that role of ArcAB is conditional. ArcAB, predominantly through the action of ArcA regulated genes, but also via a direct ArcB–Psp interaction, is required to propagate the protein IV (pIV)-dependent psp -inducing signal(s) during microaerobiosis, but not during aerobiosis or anaerobiosis. We show that ArcB directly interacts with the PspB, possibly by means of the PspB leucine zipper motif, thereby allowing cross-communication between the two systems. In addition we demonstrate that the pIV-dependent induction of psp expression in anaerobiosis is independent of PspBC, establishing that PspA and PspF can function as a minimal Psp system responsive to inner membrane stress.  相似文献   

10.
11.
The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.  相似文献   

12.
13.
The phage shock protein locus (pspFpspABCDE) of Escherichia coli has proved to be something of an enigma since its discovery. The physiological functions of the psp locus, including those of the predicted effector protein PspA, are unknown. In a previous genetic screen, we determined that a Yersinia enterocolitica pspC mutant was severely attenuated for virulence. In this study, the psp locus of Y. enterocolitica was characterized further. The pspC gene of Y. enterocolitica was found to be important for normal growth when the Ysc type III secretion system was expressed in the laboratory. This growth defect was specifically caused by production of the secretin protein, YscC. Expression of the psp genes was induced when the type III secretion system was functional or when only the yscC gene was expressed. This induction of psp gene expression required a functional pspC gene. Most significantly, evidence suggests that the expression of at least one gene that is not part of the psp locus is regulated by Psp proteins. This unidentified gene (or genes) may also be important for growth when the type III secretion system is expressed. These conclusions are supported by the effects of various psp mutations on virulence. This is the first indication that Psp proteins might be involved in the regulation of genes besides the psp locus itself.  相似文献   

14.
Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analyses yield conflicting predictions for PspC: a bitopic membrane protein with the C terminus inside, a bitopic membrane protein with the C terminus outside, or a polytopic protein with both termini inside. Previous studies of Escherichia coli PspB-LacZ and PspC-PhoA fusion proteins supported bitopic topologies, with the PspB C terminus inside and the PspC C terminus outside. Here we have used a series of independent approaches to determine the membrane topologies of PspB and PspC in Y. enterocolitica. Our data support the predicted arrangement of PspB, with its C terminus in the cytoplasm. In contrast, data from multiple independent approaches revealed that both termini of PspC are located in the cytoplasm. Additional experiments suggested that the C terminus of PspC might be the recognition site for the FtsH protease and an interaction interface with PspA, both of which would be compatible with its newly proposed cytoplasmic location. This unexpected arrangement of PspC allows a new model for events underlying activation of the Psp response, which is an excellent fit with observations from various previous studies.  相似文献   

15.
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain.  相似文献   

16.
During invasion, the obligate intracellular pathogen, Toxoplasma gondii , secretes into its host cell a variety of effector molecules, several of which have been implicated in strain-specific variation in disease. The largest family of these effectors, defined by the canonical member ROP2, quickly associates with the nascent parasitophorous vacuole membrane (PVM) after secretion. Here we demonstrate that the NH2-terminal domain of the ROP2 family contains a series of amphipathic helices that are necessary and sufficient for membrane association. While each of the amphipathic helices is individually competent to bind cellular membranes, together they act to bind the PVM preferentially, possibly through sensing its strong negative curvature. This previously uncharacterized helical domain is an evolutionarily robust and energetically efficient design for membrane association.  相似文献   

17.
The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198–206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions.  相似文献   

18.
The amphipathic helix, in which hydrophobia and hydrophilic residues are grouped on opposing faces, is a structural mot if found in many peptides and proteins that bind to membranes. One of the physical properties of membranes that can be altered by the binding of amphipathic helices is membrane monolayer curvature strain. Class A amphipathic helices, which are present in exchangeable plasma lipoproteins, can stabilize membranes by reducing negative monolayer curvature strain; proline-punctuated class A amphipathic helical segments are particularly effective in this regard. This property is suggested to be associated with some of the beneficial biological effects of this protein. On the other hand, lytic amphipathic helical peptides can act by increasing negative curvature strain or by forming pores composed of helical clusters. Thus, different amphipathic helical peptides can be membrane stabilizing or be lytic to membranes, depending on the structural motif of the helix, which in turn determines the nature of its association with membranes. Features of these peptides that are responsible for their specific properties are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
为探讨发菜噬菌体休克蛋白A(PspA)的分子信息和基因功能,本研究通过设计特异引物克隆发菜PspA基因,采用qRT-PCR技术,分析发菜PspA基因在干旱胁迫下的表达模式;构建PspA真核表达载体pCAM35 s-GFP-PspA,对PspA进行亚细胞定位和PspA基因拟南芥遗传转化,并对阳性转化拟南芥分别进行Sout...  相似文献   

20.
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387–592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8–H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号