首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ye W  Chen Y  Wang W  Yu Q  Li Y  Zhang J  Chen HF 《PloS one》2012,7(5):e36382
Amyloid fibrils are found in many fatal neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, type II diabetes, and prion disease. The VEALYL short peptide from insulin has been confirmed to aggregate amyloid-like fibrils. However, the aggregation mechanism of amyloid fibril is poorly understood. Here, we utilized molecular dynamics simulation to analyse the stability of VEALYL hexamer. The statistical results indicate that hydrophobic residues play key roles in stabilizing VEALYL hexamer. Single point and two linkage mutants confirmed that Val1, Leu4, and Tyr5 of VEALYL are key residues. The consistency of the results for the VEALYL oligomer suggests that the intermediate states might be trimer (3-0) and pentamer(3-2). These results can help us to obtain an insight into the aggregation mechanism of amyloid fibril. These methods can be used to study the stability of amyloid fibril from other short peptides.  相似文献   

2.
The structural unambiguity of folding is lost when disordered protein molecules convert into β-sheet-rich fibrils. The resulting polymorphism of protein aggregates has been studied in the context of its biomedical consequences. Events underlying the conformational variance of amyloid fibrils, as well as physicochemical boundaries between folding and misfolding pathways, remain obscure. Bifurcation and chiral mesoscopic-scale organization of amyloid fibrils are new aspects of protein misfolding. Here we characterize bifurcation events accompanying insulin fibrillation upon intensive vortexing. Upon agitation, two types of insulin fibrils with opposite chiral senses are formed; however, predominance of either species is only stochastically determined. The uncertainty of fibrils’ chiral sense holds only for fibrils grown within the physiological temperature range, while above 50 °C, the bifurcation is no longer observed—fibrils’ chiral moieties become uniformly biased towards ligand probes, as revealed by the extrinsic Cotton effect of thioflavin T, Congo red, and molecular iodine. According to transmission electron microscopy and scanning electron microscopy data, chiral variants of insulin fibrils consist of fibrous superstructures, distinct from spherulites, formed by the protein in nonagitated solutions. Gradual dissociation of the fibrils in the presence of dimethyl sulfoxide is noncooperative and can be resolved into three distinct phases: decay of the higher-order chiral structures, breakdown of fibrils, and unfolding of intermolecular β-sheet. The chiral aggregates are also destabilized by elution of NaCl implying that Debye screening of charged β-sheets provided by chloride counterions is needed for sustaining their kinetic stability. At elevated temperatures, cross-seeding of agitated insulin samples with preformed fibrils revealed a chiral conflict that prevented the passing of structural features of mother seeds to daughter fibrils in a manner typical of amyloid “strains.”  相似文献   

3.
Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85α subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain α-spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt β-conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the self-assembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.  相似文献   

4.
Geoffrey W. Platt 《FEBS letters》2009,583(16):2623-10569
β2-microglobulin (β2m) is a 99-residue protein that aggregates to form amyloid fibrils in dialysis-related amyloidosis. The protein provides a powerful model for exploration of the structural molecular mechanisms of fibril formation from a full-length protein in vitro. Fibrils have been assembled from β2m under both low pH conditions, where the precursor is disordered, and at neutral pH where the protein is initially natively folded. Here we discuss the roles of sequence and structure in amyloid formation, the current understanding of the structural mechanisms of the early stages of aggregation of β2m at both low and neutral pH, and the common and distinct features of these assembly pathways.  相似文献   

5.
The ability of a single polypeptide sequence to grow into multiple stable amyloid fibrils sets these aggregates apart from most native globular proteins. The existence of multiple amyloid forms is the basis for strain effects in yeast prion biology, and might contribute to variations in Alzheimer's disease pathology. However, the structural basis for amyloid polymorphism is poorly understood. We report here five structurally distinct fibrillar aggregates of the Alzheimer's plaque peptide Aβ(1-40), as well as a non-fibrillar aggregate induced by Zn2+. Each of these conformational forms exhibits a unique profile of physical properties, and all the fibrillar forms breed true in elongation reactions under a common set of growth conditions. Consistent with their defining cross-β structure, we find that in this series the amyloid fibrils containing more extensive β-sheet exhibit greater stability. At the same time, side chain packing outside of the β-sheet regions contributes to stability, and to differences of stability between polymorphic forms. Stability comparison is facilitated by the unique feature that the free energy of the monomer (equivalent to the unfolded state in a protein folding reaction) does not vary, and hence can be ignored, in the comparison of ΔG° of elongation values for each polymorphic fibril obtained under a single set of conditions.  相似文献   

6.
Investigation of the mechanism of tau polymerization is indispensable for finding inhibitory conditions or identifying compounds preventing the formation of paired helical filament or oligomers. Tau contains a microtubule-binding domain consisting of three or four repeats in its C-terminal half. It has been considered that the key event in tau polymerization is the formation of a β-sheet structure arising from a short hexapeptide 306VQIVYK311 in the third repeat of tau. In this paper, we report for the first time that the C-H?π interaction between Ile308 and Tyr310 is the elemental structural scaffold essential for forming a dry “steric zipper” structure in tau amyloid fibrils.  相似文献   

7.
The Common Architecture of Cross-β Amyloid   总被引:1,自引:0,他引:1  
Amyloid fibril deposition is central to the pathology of more than 30 unrelated diseases including Alzheimer's disease and Type 2 diabetes. It is generally accepted that amyloid fibrils share common structural features despite each disease being characterised by the deposition of an unrelated protein or peptide. The structure of amyloid fibrils has been studied using X-ray fibre diffraction and crystallography, solid-state NMR and electron paramagnetic resonance, and many different, sometimes opposing, models have been suggested. Many of these models are based on the original interpretation of the cross-β diffraction pattern for cross-β silk in which β-strands run perpendicular to the fibre axis, although alternative models include β-helices and natively structured proteins. Here, we have analysed opposing model structures and examined the necessary structural elements within the amyloid core structure, as well as producing idealised models to test the limits of the core conformation. Our work supports the view that amyloid fibrils share a number of common structural features, resulting in characteristic diffraction patterns. This pattern may be satisfied by structures in which the strands align close to perpendicular to the fibre axis and are regularly arranged to form β-sheet ribbons. Furthermore, the fibril structure contains several β-sheets that associate via side-chain packing to form the final protofilament structure.  相似文献   

8.
The existence of several prion strains and their capacity of overcoming species barriers seem to point to a high conformational adaptability of the prion protein. To investigate this structural plasticity, we studied here the aggregation pathways of the human prion peptide PrP82-146, a major component of the Gerstmann-Sträussler-Scheinker amyloid disease.By Fourier transform infrared (FT-IR) spectroscopy, electron microscopy, and atomic force microscopy (AFM), we monitored the time course of PrP82-146 fibril formation. After incubation at 37 °C, the unfolded peptide was found to aggregate into oligomers characterized by intermolecular β-sheet infrared bands. At a critical oligomer concentration, the emergence of a new FT-IR band allowed to detect fibril formation. A different intermolecular β-sheet interaction of the peptides in oligomers and in fibrils is, therefore, detected by FT-IR spectroscopy, which, in addition, suggests a parallel orientation of the cross β-sheet structures of PrP82-146 fibrils. By AFM, a wide distribution of PrP82-146 oligomer volumes—the smallest ones containing from 5 to 30 peptides—was observed. Interestingly, the statistical analysis of AFM data enabled us to detect a quantization in the oligomer height values differing by steps of ∼ 0.5 nm that could reflect an orientation of oligomer β-strands parallel with the sample surface. Different morphologies were also detected for fibrils that displayed high heterogeneity in their twisting periodicity and a complex hierarchical assembly.Thermal aggregation of PrP82-146 was also investigated by FT-IR spectroscopy, which indicated for these aggregates an intermolecular β-sheet interaction different from that observed for oligomers and fibrils. Unexpectedly, random aggregates, induced by solvent evaporation, were found to display a significant α-helical structure as well as several β-sheet components.All these results clearly point to a high plasticity of the PrP82-146 peptide, which was found to be capable of undergoing several aggregation pathways, with end products displaying different secondary structures and intermolecular interactions.  相似文献   

9.
Abnormally expanded polyglutamine domains are associated with at least nine neurodegenerative diseases, including Huntington's disease. Expansion of the glutamine region facilitates aggregation of the impacted protein, and aggregation has been linked to neurotoxicity. Studies of synthetic peptides have contributed substantially to our understanding of the mechanism of aggregation because the underlying biophysics of polyglutamine-mediated association can be probed independent of their context within a larger protein. In this report, interrupting residues were inserted into polyglutamine peptides (Q20), and the impact on conformational and aggregation properties was examined. A peptide with two alanine residues formed laterally aligned fibrillar aggregates that were similar to the uninterrupted Q20 peptide. Insertion of two proline residues resulted in soluble, nonfibrillar aggregates, which did not mature into insoluble aggregates. In contrast, insertion of a β-turn template DPG rapidly accelerated aggregation and resulted in a fibrillar aggregate morphology with little lateral alignment between fibrils. These results are interpreted to indicate that (a) long-range nonspecific interactions lead to the formation of soluble oligomers, while maturation of oligomers into fibrils requires conformational conversion and (b) that soluble oligomers dynamically interact with each other, while insoluble aggregates are relatively inert. Kinetic analysis revealed that the increase in aggregation caused by the DPG insert is inconsistent with the nucleation-elongation mechanism of aggregation featuring a monomeric β-sheet nucleus. Rather, the data support a mechanism of polyglutamine aggregation by which monomers associate into soluble oligomers, which then undergo slow structural rearrangement to form sedimentable aggregates.  相似文献   

10.
Amyloid fibrils formed by the 29-residue peptide hormone glucagon at different concentrations have strikingly different morphologies when observed by transmission electron microscopy. Fibrils formed at low concentration (0.25 mg/mL) consist of two or more protofilaments with a regular twist, while fibrils at high concentration (8 mg/mL) consist of two straight protofilaments. Here, we explore the structural differences underlying glucagon polymorphism using proteolytic degradation, linear and circular dichroism, Fourier transform infrared spectroscopy (FTIR), and X-ray fiber diffraction. Morphological differences are perpetuated at all structural levels, indicating that the two fibril classes differ in terms of protofilament backbone regions, secondary structure, chromophore alignment along the fibril axis, and fibril superstructure. Straight fibrils show a conventional β-sheet-rich far-UV circular dichroism spectrum whereas that of twisted fibrils is dominated by contributions from β-turns. Fourier transform infrared spectroscopy confirms this and also indicates a more dense backbone with weaker hydrogen bonding for the twisted morphology. According to linear dichroism, the secondary structural elements and the aromatic side chains in the straight fibrils are more highly ordered with respect to the alignment axis than the twisted fibrils. A series of highly periodical reflections in the diffractogram of the straight fibrils can be fitted to the diffraction pattern expected from a cylinder. Thus, the highly integrated structural organization in the straight fibril leads to a compact and highly uniform fibril with a well-defined edge. Prolonged proteolytic digestion confirmed that the straight fibrils are very compact and stable, while parts of the twisted fibril backbone are much more readily degraded. Differences in the digest patterns of the two morphologies correlate with predictions from two algorithms, suggesting that the polymorphism is inherent in the glucagon sequence. Glucagon provides a striking illustration of how the same short sequence can be folded into two remarkably different fibrillar structures.  相似文献   

11.
The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed.  相似文献   

12.
13.
Amyloid is a highly ordered form of aggregate comprising long, straight and unbranched proteinaceous fibrils that are formed with characteristic nucleation-dependent kinetics in vitro. Currently, the structural molecular mechanism of fibril nucleation and elongation is poorly understood. Here, we investigate the role of the sequence and structure of the initial monomeric precursor in determining the rates of nucleation and elongation of human β2-microglobulin (β2m). We describe the kinetics of seeded and spontaneous (unseeded) fibril growth of wild-type β2m and 12 variants at pH 2.5, targeting specifically an aromatic-rich region of the polypeptide chain (residues 62-70) that has been predicted to be highly amyloidogenic. The results reveal the importance of aromatic residues in this part of the β2m sequence in fibril formation under the conditions explored and show that this region of the polypeptide chain is involved in both the nucleation and the elongation phases of fibril formation. Structural analysis of the conformational properties of the unfolded monomer for each variant using NMR relaxation methods revealed that all variants contain significant non-random structure involving two hydrophobic clusters comprising regions 29-51 and 58-79, the extent of which is critically dependent on the sequence. No direct correlation was observed, however, between the extent of non-random structure in the unfolded state and the rates of fibril nucleation and elongation, suggesting that the early stages of aggregation involve significant conformational changes from the initial unfolded state. Together, the data suggest a model for β2m amyloid formation in which structurally specific interactions involving the highly hydrophobic and aromatic-rich region comprising residues 62-70 provide a complementary interface that is key to the generation of amyloid fibrils for this protein at acidic pH.  相似文献   

14.
Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly 15N-13C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical 13C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1-89 of Ure2p. Thus, the N-terminal segment, or “prion domain” (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of 13C-13C magnetic dipole-dipole couplings among 13C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints.  相似文献   

15.
《朊病毒》2013,7(2):52-55
Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis1, 2. At each fibril end, β-sheets provide a template for recruiting and converting monomers3. Various amyloid fibrils often occur in the same individual, yet whether distinct protein aggregates aid or inhibit the assembly of heterologous proteins is unclear. In prion disease, different amyloid-like prion aggregate structures, or strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences4-7. Here we focus on the interactions reported to occur when two pre-existing amyloids or two distinct prion strains occur together in the central nervous system.  相似文献   

16.
We report the results of atomic force microscopy, Fourier-transform infrared spectroscopy, solid-state nuclear magnetic resonance, and molecular dynamics (MD) calculations for amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein (H1). Our data reveal that H1 fibrils contain no more than two β-sheet layers. The peptide strands of H1 fibrils are antiparallel with the A117 residues aligned to form a linear chain in the direction of the fibril axis. The molecular structure of the H1 fibrils, which adopts the motif of steric zipper, is highly uniform in the region of the palindrome sequence AGAAAAGA. The closest distance between the two adjacent β-sheet layers is found to be about 5 Å. The structural features of the molecular model of H1 fibrils obtained by MD simulations are consistent with the experimental results. Overall, our solid-state NMR and MD simulation data indicate that a steric zipper, which was first observed in the crystals of fibril-forming peptides, can be formed in H1 fibrils near the region of the palindrome sequence.  相似文献   

17.
Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer’s, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL) at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM—0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6±0.6)×10−5 s−1). Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.  相似文献   

18.
Amyloid fibrils are ordered polymers in which constituent polypeptides adopt a non-native fold. Despite their importance in degenerative human diseases, the overall structure of amyloid fibrils remains unknown. High-resolution studies of model peptide assemblies have identified residues forming cross-β-strands and have revealed some details of local β-strand packing. However, little is known about the assembly contacts that define the fibril architecture. Here we present a set of three-dimensional structures of amyloid fibrils formed from full-length β2-microglobulin, a 99-residue protein involved in clinical amyloidosis. Our cryo-electron microscopy maps reveal a hierarchical fibril structure built from tetrameric units of globular density, with at least three different subunit interfaces in this homopolymeric assembly. These findings suggest a more complex superstructure for amyloid than hitherto suspected and prompt a re-evaluation of the defining features of the amyloid fold.  相似文献   

19.
《朊病毒》2013,7(3):211-216
For several different proteins an apparent correlation has been observed between the propensity for dimerization by domain-swapping and the ability to aggregate into amyloid-like fibrils. Examples include the disease-related proteins β2-microglobulin and transthyretin. This has led to proposals that the amyloid-formation pathway may feature extensive domain swapping. One possible consequence of such an aggregation pathway is that the resulting fibrils would incorporate structural elements that resemble the domain-swapped forms of the protein and, thus, reflect certain native-like structures or domain-interactions. In magic angle spinning solid-state NMR-based and other structural studies of such amyloid fibrils, it appears that many of these proteins form fibrils that are not native-like. Several fibrils, instead, have an in-register, parallel conformation, which is a common amyloid structural motif and is seen, for instance, in various prion fibrils. Such a lack of native structure in the fibrils suggests that the apparent connection between domain-swapping ability and amyloid-formation may be more subtle or complex than may be presumed at first glance.  相似文献   

20.
The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号