首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lee MC  Orci L  Hamamoto S  Futai E  Ravazzola M  Schekman R 《Cell》2005,122(4):605-617
Secretory proteins traffic from the ER to the Golgi via COPII-coated transport vesicles. The five core COPII proteins (Sar1p, Sec23/24p, and Sec13/31p) act in concert to capture cargo proteins and sculpt the ER membrane into vesicles of defined geometry. The molecular details of how the coat proteins deform the lipid bilayer into vesicles are not known. Here we show that the small GTPase Sar1p directly initiates membrane curvature during vesicle biogenesis. Upon GTP binding by Sar1p, membrane insertion of the N-terminal amphipathic alpha helix deforms synthetic liposomes into narrow tubules. Replacement of bulky hydrophobic residues in the alpha helix with alanine yields Sar1p mutants that are unable to generate highly curved membranes and are defective in vesicle formation from native ER membranes despite normal recruitment of coat and cargo proteins. Thus, the initiation of vesicle budding by Sar1p couples the generation of membrane curvature with coat-protein assembly and cargo capture.  相似文献   

2.
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.  相似文献   

3.
Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission.  相似文献   

4.
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5′-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.  相似文献   

5.
The sculpting of membranes into dynamic, curved shapes is central to intracellular cargo trafficking. Though the generation of membrane curvature during trafficking necessarily involves both lipids and membrane-associated proteins, current mechanistic views focus primarily on the formation of rigid cages and curved scaffolds by protein assemblies. Here we report on a different mechanism for the control of membrane deformation, unrelated to the imposition of predefined curvature, involving modulation of membrane material properties: Sar1, a GTPase that regulates vesicle trafficking from the endoplasmic reticulum, lowers the rigidity of the lipid bilayer membrane to which it binds. In vitro assays in which optically trapped microspheres create controlled membrane deformations revealed a monotonic decline in bending modulus as a function of Sar1 concentration, down to nearly zero rigidity, indicating a dramatic lowering of the energetic cost of curvature generation. This is the first demonstration that a vesicle trafficking protein lowers the rigidity of its target membrane, leading to a new conceptual framework for vesicle biogenesis.  相似文献   

6.
Endoplasmic reticulum (ER)—mitochondrial contact sites play a pivotal role in exchange of lipids and ions between the two organelles. How size and function of these contact sites are regulated remains elusive. Here we report a previously unanticipated, but conserved role of the small GTPase Sar1 in the regulation of ER-mitochondrial contact site size. Activated Sar1 introduces membrane curvature through its N-terminal amphiphatic helix at the ER-mitochondria interphase and thereby reducing contact size. Conversely, the S. cerevisiae N3-Sar1 mutant, in which curvature induction is decreased, caused an increase in ER-mitochondrial contacts. As a consequence, ER tubules are no longer able to mark the prospective scission site on mitochondria, thereby impairing mitochondrial dynamics. Consistently, blocking mitochondrial fusion partially rescued, whereas deletion of the dynamin-like protein enhanced the phenotype in the sar1D32G mutant. We conclude that Sar1 regulates the size of ER-mitochondria contact sites through its effects on membrane curvature.  相似文献   

7.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

8.
The mechanisms by which the coat complex II (COPII) coat mediates membrane deformation and vesicle fission are unknown. Sar1 is a structural component of the membrane-binding inner layer of COPII (Bi, X., R.A. Corpina, and J. Goldberg. 2002. Nature. 419:271-277). Using model liposomes we found that Sar1 uses GTP-regulated exposure of its NH2-terminal tail, an amphipathic peptide domain, to bind, deform, constrict, and destabilize membranes. Although Sar1 activation leads to constriction of endoplasmic reticulum (ER) membranes, progression to effective vesicle fission requires a functional Sar1 NH2 terminus and guanosine triphosphate (GTP) hydrolysis. Inhibition of Sar1 GTP hydrolysis, which stabilizes Sar1 membrane binding, resulted in the formation of coated COPII vesicles that fail to detach from the ER. Thus Sar1-mediated GTP binding and hydrolysis regulates the NH2-terminal tail to perturb membrane packing, promote membrane deformation, and control vesicle fission.  相似文献   

9.
The dynamics of clathrin-mediated endocytosis can be assayed using fluorescently tagged proteins and total internal reflection fluorescence microscopy. Many of these proteins, including clathrin and dynamin, are soluble and changes in fluorescence intensity can be attributed either to membrane/vesicle movement or to changes in the numbers of individual molecules. It is important for assays to discriminate between physical membrane events and the dynamics of molecules. Two physical events in endocytosis were investigated: vesicle scission from the plasma membrane and vesicle internalization. Single vesicle analysis allowed the characterization of dynamin and clathrin dynamics relative to scission and internalization. We show that vesicles remain proximal to the plasma membrane for variable amounts of time following scission, and that uncoating of clathrin can occur before or after vesicle internalization. The dynamics of dynamin also vary with respect to scission. Results from assays based on physical events suggest that disappearance of fluorescence from the evanescent field should be re-evaluated as an assay for endocytosis. These results illustrate the heterogeneity of behaviors of endocytic vesicles and the importance of establishing suitable evaluation criteria for biophysical processes.  相似文献   

10.
Proteins trafficking through the secretory pathway must first exit the endoplasmic reticulum (ER) through membrane vesicles created and regulated by the COPII coat protein complex. Cranio-lenticulo-sutural dysplasia (CLSD) was recently shown to be caused by a missense mutation in SEC23A, a gene encoding one of two paralogous COPII coat proteins. We now elucidate the molecular mechanism underlying this disease. In vitro assays reveal that the mutant form of SEC23A poorly recruits the Sec13-Sec31 complex, inhibiting vesicle formation. Surprisingly, this effect is modulated by the Sar1 GTPase paralog used in the reaction, indicating distinct affinities of the two human Sar1 paralogs for the Sec13-Sec31 complex. Patient cells accumulate numerous tubular cargo-containing ER exit sites devoid of observable membrane coat, likely representing an intermediate step in COPII vesicle formation. Our results indicate that the Sar1-Sec23-Sec24 prebudding complex is sufficient to form cargo-containing tubules in vivo, whereas the Sec13-Sec31 complex is required for membrane fission.  相似文献   

11.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

12.
The mechanisms by which cytosolic proteins reversibly bind the membrane and induce the curvature for membrane trafficking and remodeling remain elusive. The epsin N-terminal homology (ENTH) domain has potent vesicle tubulation activity despite a lack of intrinsic molecular curvature. EPR revealed that the N-terminal α-helix penetrates the phosphatidylinositol 4,5-bisphosphate-containing membrane at a unique oblique angle and concomitantly interacts closely with helices from neighboring molecules in an antiparallel orientation. The quantitative fluorescence microscopy showed that the formation of highly ordered ENTH domain complexes beyond a critical size is essential for its vesicle tubulation activity. The mutations that interfere with the formation of large ENTH domain complexes abrogated the vesicle tubulation activity. Furthermore, the same mutations in the intact epsin 1 abolished its endocytic activity in mammalian cells. Collectively, these results show that the ENTH domain facilitates the cellular membrane budding and fission by a novel mechanism that is distinct from that proposed for BAR domains.  相似文献   

13.
We examined the effects of wild-type and mutant atlastin-1 on vesicle transport in the endoplasmic reticulum (ER)-Golgi interface and vesicle budding from ER-derived microsomes using the temperature-sensitive reporter vesicular stomatitis virus glycoprotein (VSV-G), and the ability of purified atlastin-1 to form tubules or vesicles from protein-free phosphatidylserine liposomes. A GTPase domain mutation (T162P) altered the cellular distribution of the ER, but none of the mutations studied significantly affected transport from the ER to the Golgi apparatus. The mutations also had no significant effect on the incorporation of VSV-G into vesicles formed from ER microsomes. Atlastin-1, however, was also incorporated into microsome-derived vesicles, suggesting that it might be implicated in vesicle formation. Purified atlastin-1 transformed phosphatidylserine liposomes into branched tubules and polygonal networks of tubules and vesicles, an action inhibited by GDP and the synthetic dynamin inhibitor dynasore. The GTPase mutations T162P and R217C decreased but did not totally prevent this action; the C-terminal transmembrane domain mutation R495W was as active as the wild-type enzyme. Similar effects were observed in human embryonic kidney cells over-expressing mutant atlastin-1. We concluded that atlastin-1, like dynamin, might be implicated in membrane tubulation and vesiculation and participated in the formation as well as the function of the ER.  相似文献   

14.
The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.  相似文献   

15.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

16.
Shiro Suetsugu 《FEBS letters》2009,583(21):3401-1459
Actin polymerization mediated by the Arp2/3 complex is essential for membrane tubulation, vesicle formation and fission during clathrin-dependent endocytosis. However, the mechanism by which the polymerizing actin filaments participate in vesicle formation and fission has remained unclear. Our analyses revealed that actin polymerization occurs toward FBP17-induced membrane tubules, which are considered to be generated during endocytic vesicle formation. The tubulated membrane between the future endocytic vesicle and the plasma membrane is proposed to form an arc upon scission of the endocytic vesicle. Therefore, the actin polymerization toward the tubulated membrane may be gradually converted to those toward both the vesicles and the plasma membrane.  相似文献   

17.
Endocytic vesicle formation is a complex process that couples sequential protein recruitment and lipid modifications with dramatic shape transformations of the plasma membrane. Although individual molecular players have been studied intensively, how they all fit into a coherent picture of endocytosis remains unclear. That is, how the proper temporal and spatial coordination of endocytic events is achieved and what drives vesicle scission are not known. Drawing upon detailed knowledge from experiments in yeast, we develop the first integrated mechanochemical model that quantitatively recapitulates the temporal and spatial progression of endocytic events leading to vesicle scission. The central idea is that membrane curvature is coupled to the accompanying biochemical reactions. This coupling ensures that the process is robust and culminates in an interfacial force that pinches off the vesicle. Calculated phase diagrams reproduce endocytic mutant phenotypes observed in experiments and predict unique testable endocytic phenotypes in yeast and mammalian cells. The combination of experiments and theory in this work suggest a unified mechanism for endocytic vesicle formation across eukaryotes.  相似文献   

18.
ADP-ribosylation factor (Arf) and related small GTPases play crucial roles in membrane traffic within the exo- and endocytic pathways. Arf proteins in their GTP-bound state are associated with curved membrane buds and tubules, frequently together with effector coat proteins to which they bind. Here we report that Arf1 is found on membrane tubules originating from the Golgi complex where it colocalizes with COPI and GGA1 vesicle coat proteins. Arf1 also induces tubulation of liposomes in vitro. Mutations within the amino-terminal amphipathic helix (NTH) of Arf1 affect the number of Arf1-positive tubules in vivo and its property to tubulate liposomes. Moreover, hydrophilic substitutions within the hydrophobic part of its NTH impair Arf1-catalyzed budding of COPI vesicles in vitro. Our data indicate that GTP-controlled local induction of high curvature membranes is an important property of Arf1 that might be shared by a subgroup of Arf/Arl family GTPases.  相似文献   

19.
The GTPase dynamin catalyzes the scission of deeply invaginated clathrin-coated pits at the plasma membrane, but the mechanisms governing dynamin-mediated membrane fission remain poorly understood. Through mutagenesis, we have altered the hydrophobic nature of the membrane-inserting variable loop 1 (VL1) of the pleckstrin homology (PH) domain of dynamin-1 and demonstrate that its stable insertion into the lipid bilayer is critical for high membrane curvature generation and subsequent membrane fission. Dynamin PH domain mutants defective in curvature generation regain function when assayed on precurved membrane templates in vitro, but they remain defective in the scission of clathrin-coated pits in vivo. These results demonstrate that, in concert with dynamin self-assembly, PH domain membrane insertion is essential for fission and vesicle release in vitro and for clathrin-mediated endocytosis in vivo.  相似文献   

20.
The events regulating coat complex II (COPII) vesicle formation involved in the export of cargo from the endoplasmic reticulum (ER) are unknown. COPII recruitment to membranes is initiated by the activation of the small GTPase Sar1. We have utilized purified COPII components in both membrane recruitment and cargo export assays to analyze the possible role of kinase regulation in ER export. We now demonstrate that Sar1 recruitment to membranes requires ATP. We find that the serine/threonine kinase inhibitor H89 abolishes membrane recruitment of Sar1, thereby preventing COPII polymerization by interfering with the recruitment of the cytosolic Sec23/24 COPII coat complex. Inhibition of COPII recruitment prevents export of cargo from the ER. These results demonstrate that ER export and initiation of COPII vesicle formation in mammalian cells is under kinase regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号