首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Drosophila melanogaster, synonymous codons corresponding to the most abundant cognate tRNAs are used more frequently, especially in highly expressed genes. Increased use of such "optimal" codons is considered an adaptation for translational efficiency. Need it always be the case that selection should favor the use of a translationally optimal codon? Here, we investigate one possible confounding factor, namely, the need to specify information in exons necessary to enable correct splicing. As expected from such a model, in Drosophila many codons show different usage near intron-exon boundaries versus exon core regions. However, this finding is in principle also consistent with Hill-Robertson effects modulating usage of translationally optimal codons. However, several results support the splice model over the translational selection model: 1) the trends in codon usage are strikingly similar to those in mammals in which codon usage near boundaries correlates with abundance in exonic splice enhancers (ESEs), 2) codons preferred near boundaries tend to be enriched for A and avoid C (conversely those avoided near boundaries prefer C rather than A), as expected were ESEs involved, and 3) codons preferred near boundaries are typically not translationally optimal. We conclude that usage of translationally optimal codons usage is compromised in the vicinity of splice junctions in intron-containing genes, to the effect that we observe higher levels of usage of translationally optimal codons at the center of exons. On the gene level, however, controlling for known correlates of codon bias, the impact on codon usage patterns is quantitatively small. These results have implications for inferring aspects of the mechanism of splicing given nothing more than a well-annotated genome.  相似文献   

2.
Analysis of synonymous codon usage bias in Chlamydia   总被引:9,自引:0,他引:9  
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content.  相似文献   

3.
Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS)is the only process under control of both nuclear and mitochondrial genomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional genomes are involved.Consequently, we investigated whether or not other factors influence codon usage of coevolved genes.We used Drosophila melanogaster as a model organism.Our χ2 test on the number of codons of nuclear and mitochondrial genes involved in the OXPHOS system was significantly different (χ2=7945.16,P<0.01).A plot of effective number of codons against GC3s content of nuclear genes showed that few genes lie on the expected curve,indicating that codon usage was random.Correspondence analysis indicated a significant correlation between axis 1 and codon adaptation index(R=0.947,P<0.01)in every nuclear gene sequence.Thus,codon usage bias of nuclear genes appeared to be affected by translational selection.Correlation between axis 1 coordinates and GC content(R=0.814.P<0.01)indicated that the codon usage of nuclear genes was also affected by GC composition.Analysis of mitochondrial genes did not reveal a significant correlation between axis 1 and any parameter.Statistical analyses indicated that codon usages of both nDNA and mtDNA were subjected to context-dependent mutations.  相似文献   

4.
An evolutionary perspective on synonymous codon usage in unicellular organisms   总被引:64,自引:0,他引:64  
Summary Observed patterns of synonymous codon usage are explained in terms of the joint effects of mutation, selection, and random drift. Examination of the codon usage in 165Escherichia coli genes reveals a consistent trend of increasing bias with increasing gene expression level. Selection on codon usage appears to be unidirectional, so that the pattern seen in lowly expressed genes is best explained in terms of an absence of strong selection. A measure of directional synonymous-codon usage bias, the Codon Adaptation Index, has been developed. In enterobacteria, rates of synonymous substitution are seen to vary greatly among genes, and genes with a high codon bias evolve more slowly. A theoretical study shows that the patterns of extreme codon bias observed for someE. coli (and yeast) genes can be generated by rather small selective differences. The relative plausibilities of various theoretical models for explaining nonrandom codon usage are discussed.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

5.
Codon usage bias varies considerably among genomes and even within the genes of the same genome.In eukaryotic organisms,energy production in the form of oxidative phosphorylation(OXPHOS) is the only process under control of both nuclear and mitochondrial ge-nomes.Although factors affecting codon usage in a single genome have been studied,this has not occurred when both interactional ge-nomes are involved.Consequently,we investigated whether or not other factors influence codon usage of coevolved genes.We us...  相似文献   

6.
We have used a polymorphism dataset on introns and coding sequences of X-linked loci in Drosophila americana to estimate the strength of selection on codon usage and/or biased gene conversion (BGC), taking into account a recent population expansion detected by a maximum-likelihood method. Drosophila americana was previously thought to have a stable demographic history, so that this evidence for a recent population expansion means that previous estimates of selection need revision. There was evidence for natural selection or BGC favouring GC over AT variants in introns, which is stronger for GC-rich than GC-poor introns. By comparing introns and coding sequences, we found evidence for selection on codon usage bias, which is much stronger than the forces acting on GC versus AT basepairs in introns.  相似文献   

7.
An approximately 6.9-kb region encompassing the RpII215 gene was sequenced for 24 individuals of the island endemic species Drosophila guanche. The comparative analysis of synonymous polymorphism and divergence in D. guanche and D. subobscura, two species with pronounced differences in population size, allows contrasting the nearly neutral character of synonymous mutations. In D. guanche, unlike in D. subobscura, (1) the ratio of preferred to unpreferred synonymous changes was similar for polymorphic and fixed changes, (2) the numbers of preferred and unpreferred changes, both polymorphic and fixed, could be explained by the mutational process, and (3) the estimated scaled selection coefficient for unpreferred mutations did not differ significantly from zero. Additionally, the comparative analysis revealed that both the ratio of preferred to unpreferred synonymous changes and the frequency spectrum of unpreferred polymorphic mutations differed significantly between species. All these results indicate that a large fraction of synonymous mutations in the RpII215 gene behave as effectively neutral in D. guanche, whereas they are weakly selected in D. subobscura. The reduced efficacy of selection in the insular species constitutes strong evidence of the nearly neutral character of synonymous mutations and, therefore, of the role of weak selection in maintaining codon bias.  相似文献   

8.
High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms.  相似文献   

9.
10.
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.  相似文献   

11.
The honeybee (Apis mellifera) has a genome with a wide variation in GC content showing 2 clear modal GC values, in some ways reminiscent of an isochore-like structure. To gain insight into causes and consequences of this pattern, we used a comparative approach to study the genome-wide alignment of primarily coding sequence of A. mellifera with Drosophila melanogaster and Anopheles gambiae. The latter 2 species show a higher average GC content than A. mellifera and no indications of bimodality, suggesting that the GC-poor mode is a derived condition in honeybee. In A. mellifera, synonymous sites of genes generally adopt the GC content of the region in which they reside. A large proportion of genes in GC-poor regions have not been assigned to the honeybee assembly because of the low sequence complexity of their genome neighborhood. The synonymous substitution rate between A. mellifera and the other species is very close to saturation, but analyses of nonsynonymous substitutions as well as amino acid substitutions indicate that the GC-poor regions are not evolving faster than the GC-rich regions. We describe the codon usage and amino acid usage and show that they are remarkably heterogeneous within the honeybee genome between the 2 different GC regions. Specifically, the genes located in GC-poor regions show a much larger deviation in both codon usage bias and amino acid usage from the Dipterans than the genes located in the GC-rich regions.  相似文献   

12.
Revealing how recombination affects genomic sequence is of great significance to our understanding of genome evolution. The present paper focuses on the correlation between recombination rate and dinucleotide bias in Drosophila melanogaster genome. Our results show that the overall dinucleotide bias is positively correlated with recombination rate for genomic sequences including untranslated regions, introns, intergenic regions, and coding sequences. The correlation patterns of individual dinucleotide biases with recombination rate are presented. Possible mechanisms of interaction between recombination and dinucleotide bias are discussed. Our data indicate that there may be a genome-wide universal mechanism acting between recombination rate and dinucleotide bias, which is likely to be neighbor-dependent biased gene conversion.  相似文献   

13.
Aspergillus is a genus of mold fungi that includes more than 200 described species. Many members of the group are relevant pathogens and other species are economically important. Only one species has been analyzed for codon usage, and this was performed with a small number of genes. In this paper, we report the codon usage patterns of eight completely sequenced genomes which belong to this genus. The results suggest that selection for translational efficiency and accuracy are the major factors shaping codon usage in all of the species studied so far, and therefore they were active in the last common ancestor of the group. Composition and molecular distances analyses show that highly expressed genes evolve slower at synonymous sites. We identified a conserved core of translationally optimal codons and study the tRNA gene pool in each genome. We found that the great majority of preferred triplets match the respective cognate tRNA with more copies in the respective genome. We discuss the possible scenarios that can explain the observed differences among the species analyzed. Finally we highlight the biotechnological application of this research regarding heterologous protein expression.  相似文献   

14.
15.
Egg‐to‐adult viability is studied in the progeny of the flies of different genotypes according to S and F alleles of Amy locus of Drsophila subobscura . This component of fitness is observed in the single and mixed cultures with various frequencies of three genotypes (S/S, F/F and S/F) under conditions of low (LD) and high densities (HD) on three types of media with different carbohydrate composition. In such multifactorial experimental conditions, density‐ and frequency‐dependent selection on certain Amy genotypes was observed. Genotype frequencies and carbohydrate composition have significant effect on the viability of Amy genotypes. The significant intergenotypic differences exist, mostly at HD conditions. The heterozygous genotype S/F has generally lower viability which decreases with its increased frequencies, on all media at LD or HD. The results suggest a high level of complexity and interaction between these two types of balanced selection.  相似文献   

16.
17.
Iriarte A  Baraibar JD  Romero H  Musto H 《Gene》2011,473(2):110-118
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.  相似文献   

18.
Shcherban AB  Vaughan DA  Tomooka N 《Genetica》2000,108(2):145-154
To better understand the genetic diversity of the wild relatives of rice (Oryza sativa L.) in the O. officinalis species complex repetitive DNA markers were obtained from the diploid species of this complex. One cloned sequence from O. eichingeri gave intense hybridization signals with all species of the O. officinalis complex. This 242 bp clone, named pOe.49, has a copy number from 0.9 to 4.0 × 104 in diploid species of this complex. Analysis of the primary structure and database searches revealed homology of pOe.49 to a number of sequences representing part of the integrase coding domain of retroviruses and gypsy-like retrotransposons. Sequencing of specific PCR products confirmed that pOe.49 is part of a gypsy-like retrotransposon. RFLP analysis was used to study the genomic organisation of pOe.49 among 30 accessions of the O. officinalis complex using 10 restriction enzymes. Diversity analysis based on 120 polymorphic fragments obtained from the RFLP assay grouped the O. officinalis complex accessions by genome, species and eco-geographic groups. The results suggest that, with further characterization, this retrotransposon-like DNA sequence may be useful for phylogenetic analysis of species in the O. officinalis complex. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Summary. New DNA sequence polymorphisms were identified at four bovine autosomal loci: growth hormone, low density lipoprotein receptor, α-subunit of glycoprotein hormones and thyroglobulin. Assuming independent assortment between these polymorphisms, the probabilities to be heterozygous at these four loci are 0.48, 0.36, 0.10 and 0.77 respectively, within the Belgian Blue Cattle breed (BBCB). Nucleotide diversity was estimated, showing that animals from the BBCB are heterozygous for 1/1450 nucleotides, a value significantly lower than the 1/500 value found in man. Moreover, we have estimated that the mutation rate at the cytosines of CG dinucleotides is about 10 times higher than that for other nucleotides.  相似文献   

20.
Peripheral populations are those situated at the distribution margins of a species and are often subjected to more extreme abiotic and biotic conditions than those at the core. Here, we hypothesized that shorter repeat length and fewer heteroplasmic mitochondrial DNA (mtDNA) copies, which are associated with more efficient mitochondrial function, may be related to improved survival under extreme environmental conditions. We sampled eastern spadefoot toads (mostly as tadpoles) from 43 rain pools distributed along a 300-km gradient from core to edge of the species' distribution. We show that mean pool tandem repeat length and heteroplasmy increase from edge to core, even after controlling for body size. We evaluate several alternative hypotheses and propose the Fisher hypothesis as the most likely explanation. However, additional sequential sampling and experimental studies are required to determine whether selection under extreme conditions, or alternative mechanisms, could account for the gradient in heteroplasmy and repeat length in the mtDNA control region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号