首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

2.
Abstract: To learn whether or not the levels of β-amyloid protein precursor (APP) and τ mRNAs are related to the formation of β-amyloid and neurofibrillary tangles, we quantified these mRNA levels in three cortical regions of 38 aged human brains, which were examined immunocyto-chemically for β-amyloid and tangles. Marked individual variabilities were noted in APP and τ mRNA levels among elderly individuals. The mean APP mRNA level was slightly reduced in the β-amyloid plaque (++) group, but not in the plaque (+) group, compared to the plaque (−) group. Some brains in the plaque (−) group showed increased APP expression, the extent of which was not seen in the plaque (+)or(++) group. The differences in the mean τ mRNA levels were not statistically significant among the tangle (−), (+), and (++) groups. These results show that β-protein and τ deposition do not accompany increased expression of the APP and τ genes, respectively, and thus suggest that factors other than gene expression may be at work in the progression of β-amyloid and/or tangle formation in the aged human brain.  相似文献   

3.
Inhibition of β-Amyloid Production by Activation of Protein Kinase C   总被引:2,自引:2,他引:0  
The cellular factors regulating the generation of β-amyloid from the amyloid precursor protein (APR) are unknown. Activation of protein kinase C (PKC) by phorbol ester treatment inhibited the generation of the 4-kDa β-amyloid peptide in transfected COS cells, a human glioma cell line, and human cortical astrocytes. An analogue of diacylglycerol, the endogenous cellular activator of PKC, also inhibited the generation of β-amyloid. Activation of PKC increased the level of secreted APP in transfected COS cells but did not significantly affect the level of secreted APP in primary human astrocytes or in the glioma cell line. Cell-associated APP and the secreted APP derivative, but not β-amyloid, were phosphorylated on serine residues. Activation of PKC did not increase the level of APP phosphorylation, suggesting that PKC modulates the proteolytic cleavage of APP indirectly by phosphorylation of other substrates. These results indicate that PKC activation inhibits β-amyloid production by altering APP processing and suggest that β-amyloid production can be regulated by the phospholipase C-diacylglycerol signal transduction pathway.  相似文献   

4.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

5.
Abstract: The powerful regulatory machinery of protein phosphorylation operates in the extracellular environment of the brain. Enzymatic activity with the catalytic specificity of protein kinase C (PKC) was detected on the surface of brain neurons, where it can serve as a direct target for neurotrophic and neurotoxic substances that control neuronal development and cause neurodegeneration. This activity fulfilled all the criteria required of an ectoprotein kinase (ecto-PK). Detailed analysis of surface protein phosphorylation in cultured brain neurons using specific exogenous substrates (casein, histones, and myelin basic protein), inhibitors (PKC-pseudosubstrate 19–36; K252b) and antibodies (anti-PKC catalytic region M.Ab.1.9, antibodies to the carboxy-terminus of eight PKC isozymes) revealed several types of ecto-PK activity, among them ecto-PKs with catalytic specificity of the PKC isozymes ζ and δ. The activity of the neuronal ecto-PKC is constitutive and not stimulated by phorbol esters. The phosphorylation of a 12K/13K surface protein duplex by ecto-PKC-δ was found to be developmentally regulated, with peak activity occurring during the onset of neuritogenesis. Alzheimer's amyloid peptides β1–40 and β25–35 applied at neurotrophic concentrations stimulated the phosphorylation of endogenous substrates of ecto-PKC activity in brain neurons but inhibited specifically this surface phosphorylation activity with the same dose-response relationships that cause neurodegeneration. As may be expected from a relevant pathophysiological activity, β-amyloid peptide 1–28 did not inhibit this surface phosphorylation. The discovery that ecto-PKC-mediated protein phosphorylation serves as a target for β-amyloid peptides at the very site they operate, i.e., at the neuronal cell surface, opens a new research direction in the investigation of molecular events that play a role in the etiology of developmental disabilities and neurodegenerative disorders.  相似文献   

6.
Abstract: The β-amyloid precursor protein (βAPP) is the source of the amyloid β-peptide that accumulates in the brain in Alzheimer's disease. A major processing pathway for βAPP involves an enzymatic cleavage within the amyloid β-peptide sequence that liberates secreted forms of βAPP (APPSs) into the extracellular milieu. We now report that postischemic administration of these APPSs intracerebroventricularly protects neurons in the CA1 region of rat hippocampus against ischemic injury. Treatment with APPS695 or APPS751 resulted in increased neuronal survival, and the surviving cells were functional as demonstrated by their ability to synthesize protein. These data provide direct evidence for a neuroprotective action of APPSs in vivo.  相似文献   

7.
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD.  相似文献   

8.
9.
Abstract: The neurodegeneration of Alzheimer's disease has been theorized to be mediated, at least in part, by insoluble aggregates of β-amyloid protein that are widely distributed in the form of plaques throughout brain regions affected by the disease. Previous studies by our laboratory and others have demonstrated that the neurotoxicity of β-amyloid in vitro is dependent upon its spontaneous adoption of an aggregated structure. In this study, we report extensive structure-activity analyses of a series of peptides derived from both the proposed active fragment of β-amyloid, β25–35, and the full-length protein, β1–42. We examine the effects of amino acid residue deletions and substitutions on the ability of β-amyloid peptides to both form sedimentable aggregates and induce toxicity in cultured hippocampal neurons. We observe that significant levels of peptide aggregation are always associated with significant β-amyloid-induced neurotoxicity. Further, both N- and C-terminal regions of β25–35 appear to contribute to these processes. In particular, significant disruption of peptide aggregation and toxicity result from alterations in the β33–35 region. In β1–42 peptides, aggregation disruption is evidenced by changes in both electrophoresis profiles and fibril morphology visualized at the light and electron microscope levels. Using circular dichroism analysis in a subset of peptides, we observed classic features of β-sheet secondary structure in aggregating, toxic β-amyloid peptides but not in nonaggregating, nontoxic β-amyloid peptides. Together, these data further define the primary and secondary structures of β-amyloid that are involved in its in vitro assembly into neurotoxic peptide aggregates and may underlie both its pathological deposition and subsequent degenerative effects in Alzheimer's disease.  相似文献   

10.
Abstract: The fragment of β-amyloid comprised of amino acids 25–35 induces a rapid, concentration-dependent increase in cytosolic free calcium levels in suspensions of PC12 neuronal cells. This action of β-amyloid 25–35 is not altered by pretreatment with the calcium channel blockers nifedipine or cobalt, with the depleter of intracellular calcium stores cyclopiazonic acid, or with the phospholipase C inhibitor neomycin. However, the effects of β-amyloid 25–35 on cytosolic free calcium are absent in calcium-free buffer and are blocked by the antioxidant lazaroid U-83836E and by vitamin E. β-Amyloid 25–35 is also neurotoxic and produces a concentration-dependent reduction in the viability of PC12 cells in culture. The neurotoxic action of β-amyloid is blocked by U-83836E and vitamin E but not by nifedipine or cobalt. These data indicate that both the disruption of calcium homeostasis and the reduction of cell viability produced by β-amyloid in PC12 cells are mediated by free radical-based processes.  相似文献   

11.
The microtubule-associated protein tau, which stimulates the assembly of alpha-beta tubulin heterodimers into microtubules, is abnormally phosphorylated in Alzheimer's disease (AD) brain and is the major component of paired helical filaments. In the present study, the levels of tau and abnormally phosphorylated tau were determined in brain homogenates of AD and age-matched control cases. A radioimmuno-slot-blot assay was developed, using a primary monoclonal antibody, Tau-1, and a secondary antibody, antimouse 125I-immunoglobulin G. To assay the abnormally phosphorylated tau, the blots were treated with alkaline phosphatase before immunolabeling. The levels of total tau were about eightfold higher in AD (7.3 +/- 2.7 ng/micrograms of protein) than in control cases (0.9 +/- 0.2 ng/micrograms), and this increase was in the form of the abnormally phosphorylated protein. These studies indicate that the abnormal phosphorylation--not a decrease in the level of tau--is a likely cause of neurofibrillary degeneration in AD.  相似文献   

12.
Abstract: The β-amyloid peptide (Aβ) is a normal proteolytic processing product of the amyloid precursor protein, which is constitutively expressed by many, if not most, cells. For reasons that are still unclear, Aβ is deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease (AD). The factor(s) responsible for the clearance of soluble Aβ from biological fluids or tissues are poorly understood. We now report that human α2-macroglobulin (α2M), a major circulating endoproteinase inhibitor, which has recently been shown to be present in senile plaques in AD, binds 125I-Aβ(1–42) with high affinity (apparent dissociation constant of 3.8 × 10?10M). Approximately 1 mol of Aβ is bound per mole of α2M. Both native and methylamine-activated α2M bind 125I-Aβ(1–42). The binding of 125I-Aβ(1–42) to α2M is enhanced by micromolar concentrations of Zn2+ (but not Ca2+) and is inhibited by noniodinated Aβ(1–42) and Aβ(1–40) but not by the reverse peptide Aβ(40-1) or the cytokines interleukin 1β or interleukin 2. α1-Antichymotrypsin, another plaque-associated protein, inhibits both the binding of 125I-Aβ(1–42) to α2M as well as the degradation of 125I-Aβ(1–42) by proteinase-activated α2M. Moreover, the binding of 125I-Aβ(1–42) to α2M protects the peptide from proteolysis by exogenous trypsin. These data suggest that α2M may function as a carrier protein for Aβ and could serve to either facilitate or impede clearance of Aβ from tissues such as the brain.  相似文献   

13.
Expression of the genes encoding the beta/A4 amyloid protein precursor (APP) and microtubule-associated protein tau was studied in an embryonal carcinoma cell line (P19) that differentiates in vitro into cholinergic neurons after treatment with retinoic acid. Expression of APP increased 34- (mRNA) and 50-fold (protein) during neuronal differentiation; APP-695 accounted for most of this increase. These remarkable increases in APP expression coincided with a proliferation of neuronal processes and with an increase in content of tau mRNA. Moreover, subsequent decreases in the levels of APP and tau mRNA coincided with the onset of the degeneration of the neuronal processes. Immunocytochemical staining suggested that greater than 85% of the P19-derived neurons are cholinergic and that APP is present in the neuronal processes and cell bodies. These results suggest that APP may play an important role in construction of neuronal networks and neuronal differentiation and also indicate that this embryonal carcinoma cell line provides an ideal model system to investigate biological functions of APP and the roles of APP and tau protein in development of Alzheimer's disease in cholinergic neurons.  相似文献   

14.
Abstract: Abnormally hyperphosphorylated τ is the major protein subunit of paired helical filaments in Alzheimer brains. We have examined its site-specific dephosphorylation by different protein phosphatases. Dephosphorylation of τ was monitored by its interaction with several phosphorylation-dependent antibodies. Alzheimer τ was dephosphorylated by brain protein phosphatase-2B at the abnormally phosphorylated sites Ser46, Ser199, Ser202, Ser235, Ser396, and Ser404, and its relative mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis shifted to that of normal τ. Protein phosphatases-1 and -2A could dephosphorylate only some of the above six phosphorylation sites. These results indicate that protein phosphatase-2B might be involved in hyperphosphorylation of τ in Alzheimer's disease.  相似文献   

15.
The beta-amyloid precursor protein (beta-APP) contains a copper-binding site localized between amino acids 135 and 156 (beta-APP(135-156)). We have employed synthetic beta-APP peptides to characterize their capacities to reduce Cu(II) to Cu(I). Analogues of the wild-type beta-APP(135-156) peptide, containing specific amino acid substitutions, were used to establish which residues are specifically involved in the reduction of copper by beta-APP(135-156). We report here that beta-APP's copper-binding domain reduced Cu(II) to Cu(I). The single-mutant beta-APP(His147-->Ala) and the double-mutant beta-APP(His147-->Ala/His149-->Ala) showed a small decrease in copper reduction in relation to the wild-type peptide and the beta-APP(Cys144-->Ser) mutation abolished it, suggesting that Cys144 is the key amino acid in the oxidoreduction reaction. Our results confirm that soluble beta-APP is involved in the reduction of Cu(II) to Cu(I).  相似文献   

16.
Abstract: Alzheimer's disease is characterized neuropathologically by the presence of neuritic and amyloid plaques, vascular amyloid, and neurofibrillary tangles in specific brain areas. The main constituent of amyloid deposits is amyloid β protein, a 40–42 amino acid proteolytic product of the amyloid β-precursor protein. In our search for proteases that can generate the N-terminus of amyloid β protein (β-secretases), we discovered a thiol-dependent metalloprotease that was identified, by peptide sequencing, as metalloendopeptidase EC 3.4.24.15. In vitro, the metalloprotease cleaves the methionine-aspartic acid bond in a 10 amino acid synthetic peptide, indicating that it could generate the N-terminus of amyloid β protein, and generates amyloidogenic fragments from full-length recombinant amyloid β-precursor protein. Mouse monoclonal antibodies produced against a unique synthetic peptide from the metalloprotease labeled various monkey tissues as detected by western blots and immunohistochemistry. Unexpectedly, two monoclonal antibodies, IVD6 and IIIF3, immunolabeled strongly intracellular neurofibrillary tangles, neurites of senile plaques, and neuropil threads, but not "ghost" tangles or amyloid in sections taken from Alzheimer's disease brain. This finding provides further evidence for the metalloprotease's relevance to Alzheimer's disease pathology, although the connection between tangle staining and the formation of amyloid β protein remains to be elucidated.  相似文献   

17.
Abstract: The two pathological lesions found in the brains of Alzheimer's disease patients, neurofibrillary tangles and neuritic plaques, are likely to be formed through a common pathway. Neurofibrillary tangles are intracellular aggregates of paired helical filaments, the main component of which is hyperphosphorylated forms of the microtubule-associated protein τ. Extracellular neuritic plaques and diffuse and vascular amyloid deposits are aggregates of β-amyloid protein, a 4-kDa protein derived from the amyloid precursor protein (APP). Using conditions in vitro under which two proline-directed protein kinases, glycogen synthase kinase-3β (GSK-3β) and mitogen-activated protein kinase (MAPK), were able to hyperphosphorylate τ, GSK-3β but not MAPK phosphorylated recombinant APPcyt. The sole site of phosphorylation in APPcyt by GSK-3β was determined by phosphoamino acid analysis and phosphorylation of APPcyt mutant peptides to be Thr743 (numbering as for APP770). This site was confirmed by endoproteinase Glu-C digestion of APPcyt and peptide sequencing. The ability of GSK-3β to phosphorylate APPcyt and τ provides a putative link between the two lesions and indicates a critical role of GSK-3β in the pathogenesis of Alzheimer's disease.  相似文献   

18.
Abstract: The amyloid β protein (25–35) stimulated appearance of 3H-inositol phosphates from [3H]inositol-prelabeled LA-N-2 cells was investigated. This stimulation was unaltered by extra- and intracellular calcium chelators in a calcium-free medium or by several protein kinase inhibitors. This phospholipase C stimulation by amyloid β protein appeared to be pertussis toxin sensitive. It is possible that this phospholipase C stimulation by amyloid β protein is a receptor-mediated process. This possibility is based on two related observations. The stimulation is ablated by the presence of conventional antagonists for metabotropic, adrenergic, and bombesin agonists. The IC50 values were 12 µ M for propranolol, 15 µ M for AP-3, and 25 n M for [Tyr4, d -Phe12]bombesin. Additional support comes from results of densensitization and resensitization experiments. Amyloid β protein stimulation of phospholipase C was absent from LA-N-2 cells previously treated with norepinephrine, trans -1-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD), bombesin, or amyloid β peptide. In a similar manner, LA-N-2 cells previously treated with amyloid β protein were no longer responsive to norepinephrine, t-ACPD, or bombesin. The responsiveness to amyloid β protein returned, subsequent to a period of resensitization for the individual agonists. It is suggested that this observed amyloid β protein stimulation of phospholipase C may be responsible for the elevated quantity of inositol seen in the brains of Alzheimer's disease patients.  相似文献   

19.
20.
beta-Amyloid protein is a major protein component of neuritic plaques in the brain of Alzheimer's disease patients. A major advance in understanding the molecular biology of Alzheimer's disease came with the purification and sequencing of this protein. Because beta-amyloid protein is very insoluble, extreme conditions such as 88% formic acid were commonly used to dissolve its fibrils. We now report that 88% formic acid covalently modifies beta-amyloid protein fragments, probably by the formation of a formate ester to a serine in the protein. The t1/2 of the formylation is approximately 3.5 h, and the t1/2 for hydrolysis of the formylated peptide is much longer, being 9.9 h in water and 66 h in HPLC eluant. This suggests that if formic acid is used in the purification of beta-amyloid protein or peptide fragments of this protein, it is likely that some formylated peptide will be present in subsequent studies. Although unrecognized modification of a protein is inherently undesirable, it is uncertain what effects this formylation will have on ensuing studies. Certainly, investigations into the immunologic, physical, and physiologic properties of beta-amyloid protein could be influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号