首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meadow voles, Microtus pennsylvanicus , affect the species composition, distribution, and succession of plants in grassland ecosystems, but the effects of voles on herbaceous plants when grasslands are bordered by wooded edges is not known. We investigated the impact of wooded edges on vole distribution and herbivory of relatively palatable and unpalatable native prairie plant species by studying five reconstructed tallgrass prairies with wooded edges in central Iowa. A 50×50 m trapping grid at each site was established to determine the proportion of voles captured at various distances from the edge. We found that meadow voles were less abundant at wooded edges and, in general, increased in number toward the prairie interior. Seedlings of purple prairie clover ( Dalea purpurea ) and Illinois bundleflower ( Desmanthus illinoensis ), a relatively palatable and unpalatable species, respectively, were transplanted onto simulated gopher mounds 2, 5, 10, 20 and 30 m from the edge. The number of plants grazed per species per mound was determined 1 week and 4 weeks after planting. The amount of herbivory on both species was significantly different by distance, with fewer plants eaten 2 m from the edge. Interestingly, the amount of herbivory on relatively unpalatable plants did not differ from more palatable plants. Herbivory on both plant species also varied by site, such that sites with lower vole density tended to have lower amounts of herbivory. These results indicate that wooded edges do have an effect on meadow vole distribution and native prairie seedling herbivory. Because voles avoid wooded edges, seedlings of any species may experience a small refuge from herbivory along wooded edges.  相似文献   

2.
Howe HF 《Oecologia》2008,157(2):279-286
It is not clear how plant species preferred as forage by rodents persist in prairie vegetation. To test permanence of suppression of wet-mesic prairie vegetation by vole (Microtus pennsylvanicus) herbivory in synthetic experimental communities, access treatments were reversed after 9 years of vole exclusion or access. Between 1996 and 2004, rye grass Elymus virginicus (Poaceae) and tick-trefoil Desmodium canadense (Fabaceae) achieved mean cover of up to 30 and 25%, respectively, in plots where voles were excluded, but disappeared from plots where voles had access. To determine whether these species remained vulnerable to vole herbivory as established adults, and to determine whether the species could recover if vole herbivory were removed, access treatments were reversed at the end of the 2004 growing season and monitored through 2007. Repeated measures ANOVA demonstrated dramatic vole suppression of established E. virginicus, but not D. canadense, indicating continuing vulnerability of the grass but not of the adult legume. Release from vole herbivory resulted in re-growth of rye, but not tick-trefoil, which was apparently suppressed by established vegetation. Two additional common planted species did not respond to treatment reversal, nor did 11 much less common planted species that comprised a minor portion of the vegetation. Dominant perennial black-eyed Susan Rudbeckia subtomentosa (Asteraceae) did not change in plant numbers by year or treatment, but expanded or contracted in stems per plant and cover as E. virginicus was suppressed or released by vole herbivory or its absence. Results indicate that preferred food plants may persist through capacity to quickly recover during periods of relative vole scarcity, or reach a refuge in maturity.  相似文献   

3.
Fox predation on cyclic field vole populations in Britain   总被引:3,自引:0,他引:3  
The diet of the red fox Vulpes vulpes L. was studied during three winter periods in spruce pklantations in Britain, during which time the cyclic field vole Microtus agrestis L. populations varied in abundance. Field voles and roe deer Capreolus capreolus L. were the two main prey species in the diet of the red fox. The contribution of lagomorphs to fox diet never exceeded 35% and species of small mammal other than field voles were of minor importance. The contribution of field voles was dependent on vole density. The non-linear density dependent relationship with a rather abrupt increase of field voles in fox did when vole density exceeded ca 100 voles ha−1 was consistent with a prey-switching response. The contribution of field voles to fox diet during the low phase of population cycles was lower in Kielder Forest than in other ecosystems with cyclic vole populations. The number of foxes killed annually by forestry rangers was consistent with the evidence from other studies that foxes preying on cyclic small rodents might show a delayed numerical response to changes in vole abundance. Estimates of the maximum predation rate of the fox alone (200–290 voles ha−1 of vole habitat year−1) was well above a previously predicted value for the whole generalist predator community in Kielder Forest. Our data on the functional response of red foxes and estimates of their predation rates suggest that foxes should have a strong stabilising impact on vole populations, yet voles show characteristic 3-4 yr cycles.  相似文献   

4.
We offered captive common voles (Microtus arvalis) a choice of 11 plant species (representing four ecological groups) growing in vivaria. Selection was evaluated by measuring (1) the biomass of each plant species consumed and (2) functional and life-history plant traits. The legume Trifolium pratense, known for its high nutrient level, and well accessible rosette forbs creating the highest biomass at the soil ground level, were mostly preferred. Voles avoided mainly grasses and the creeping forb Thymus pulegioides. The experiment showed that foraging was strongly plant species-specific. We assessed whether plant functional traits explain selective foraging in common voles. To explore this, we reanalyzed Holišová’s (1959) data about common vole stomach contents and plant trait databases. Regression tree analysis indicated that plant guild and life span were the best predictors of dietary selection, with a probability exceeding 0.5 that voles would eat more grasses and/or legumes than forbs. These results do not correspond with the feeding trial. We suggest that the voles usually consume grasses in the field because grasses are abundant and readily available, but prefer protein-rich forbs when possible.  相似文献   

5.
A prairie dog (Cynomys ludovicianus) colony with a known history of habitation was studied to quantify the effects of herbivory on plant species composition, dominance, stature and diversity in a North American mixedgrass prairie. Gradient analysis was used to quantify the relationship between plant community structure, prairie dog density, burrow density and habitation history and to document community-level responses of plants subjected to heavy grazing pressure. The results quantify the type, rate and extent of change which plant populations and communities may undergo in response to the differential grazing of plants variously tolerant of defoliation.Detrended correspondence analysis indicated that 69% of the between-sample floristic variance on the site was attributable to prairie dog habitation. Perennial grasses were rapidly displaced from the site within 3 yr of colonization and were replaced by annual forbs. The net result was an increase in species richness and diversity on the prairie dog colony. Within the colony, however, the number of species was more a function of stand size than colonization history.Significant decreases in canopy stature after 2 yr of habitation resulted from replacement of mid-height grass species by shortgrass species and forbs. In addition, there was a shift from tall growth forms of off-colony species to dwarf growth forms of the same species on the colony. Decreases in litter and increases in bare soil cover were substantial during the first 2 yr of habitation but changed little thereafter.Abbreviations WCC Wind Cave Canyon - DCA Detrended Correspondence Analysis  相似文献   

6.
Productive tundra plant communities composed of a variety of fast growing herbaceous and woody plants are likely to attract mammalian herbivores. Such vegetation is likely to respond to different-sized herbivores more rapidly than currently acknowledged from the tundra. Accentuated by currently changing populations of arctic mammals there is a need to understand impacts of different-sized herbivores on the dynamics of productive tundra plant communities. Here we assess the differential effects of ungulate (reindeer) and small rodent herbivores (voles and lemmings) on high productive tundra vegetation. A spatially extensive exclosure experiment was run for three years on river sediment plains along two river catchments in low-arctic Norway. The river catchments were similar in species pools but differed in species abundance composition of both plants and vertebrate herbivores. Biomass of forbs, deciduous shrubs and silica-poor grasses increased by 40–50% in response to release from herbivory, whereas biomass of silica-rich grasses decreased by 50–75%. Hence both additive and compensatory effects of small rodents and reindeer exclusion caused these significant changes in abundance composition of the plant communities. Changes were also rapid, evident after only one growing season, and are among the fastest and strongest ever documented in Arctic vegetation. The rate of changes indicates a tight link between the dynamics of productive tundra vegetation and both small and large herbivores. Responses were however not spatially consistent, being highly different between the catchments. We conclude that despite similar species pools, variation in plant species abundance and herbivore species dynamics give different prerequisites for change.  相似文献   

7.
橙腹田鼠(Microtus ochrogaster)和草原田鼠(M. pennsylvanicus)是两种亲缘关系很近,但有着完全不同交配体制的田鼠。本文试图通过他们头骨的形态学比较来验证幼体生长发育(paedomorphosis)可以印证单配制交配体制进化的假说。通过几种头骨的测量,我们发现草原田鼠头骨的长与宽比例大于橙腹田鼠,说明前者具有相对狭长的头骨。进一步的测量发现,这种不同是由于草原田鼠具有相对较长的鼻骨造成的。最后,我们对同种内成年和幼年的头骨进行了比较,发现单配制的橙腹田鼠相对于多配制的草原田鼠,其成年的头骨与幼年的头骨更相似。这些测量结果说明与多配制的田鼠相比,单配制的田鼠在形态及行为上保留更多的幼年状态,而这种行为很可能与其交配体制有关。  相似文献   

8.
Autumn and winter predation on bank vole Clethrtonomys glareolus and yellow-necked mouse Apodemus flavicollis was studied in 1985/86-88/89 in an 11 2 km2 area of the Bialowieza National Park Rodents regularly increased in numbers from spring to autumn and decreased throughout winter Out of 23 species of predators, the most common were tawny owl Strix aluco (43-57 adult ind 10 km−2) weasel Mustela ntvahs (17-27 ind), buzzard Buteo buteo (12-16) and pine marten Martes martes (5-8) Voles and mice were the staple food for two specialists the stoat Mustela erminea and the weasel, and two generahsts the tawny owl and the pine marten The generalists exploited different alternative prey when rodents were scarce tawny owl -amphibians, marten - small mammals, and the red fox Vulpes vulpes - ungulate carcasses and hares The depth of snow and abundance of voles were two major factors shaping the contribution of voles to tawny owl and marten diets No such relationships were found for mice and generalist predators The predation by 8 species (tawny owl, buzzard, marten, weasel, stoat, polecat Mustela putortus fox, and raccoon dog Nyctereutes procyonoides) from 1 October to 15 April in 1986/87, 87/88, and 88/89 was estimated to be on average 28-35 voles and 14-17 mice ha Estimates suggested that three species were responsible for 86-95% of the total predation impact tawny owl (56-71%), weasel (11-21%) and marten (10-15%) The predation impact was similar to the annual decrease in rodent numbers from autumn till spring voles 35 (SD 111) lnds ha-1in autumn and 8 (SD 2 6) lnds ha-1in spring, and mice 24 (SD 16 3) mds ha−1 in autumn and 3 (SD 2 5) in spring Predation, therefore, was regarded as the main agent of rodent mortality throughout autumn and winter  相似文献   

9.
Botanical composition of the diet of eight Spanish goats was studied on the Northern Great Basin Experimental Range during two stages of plant phenology (active growth in early July and cured forage in mid-August) to assess their potential for the control of sagebrush (Artemisia tridentata sspp. wyomingensis Nutt.) and western juniper (Juniperus occidentalis Hook.) and their nutritional status on sagebrush-steppe rangelands. Diets were quantified by documenting the number of visits to each species, the bites harvested and time expended grazing each forage over 4 consecutive days in each period. Forage chemical characteristics evaluated included: CP, NDF, ADF, ADL and IVDMD. Diet composition and forage quality indices varied significantly (P < 0.05) with changes in plant phenology. Vegetation cover averaged 52% in the pasture and consisted of 36% grasses, 8% forbs, 7% shrubs and 0.6% trees. Available herbage (excluding woody plants) was 534 kg ha−1 during active growth trials and 572 kg ha−1 when forages had cured. When forages were green goats acquired 28% of their total bites from grasses, 71% from forbs, 0.3% from shrubs and 0.9% from juniper trees. After forages had cured values were 35% from grasses, 56% from forbs, 0.1% from shrubs and 8.8% from juniper. The browsing of juniper (both foliage and bark), after herbaceous forages had cured, was the only substantive use of woody plants. Sagebrush was only lightly used (0.2% of total bites) when herbaceous forages were actively growing. Available herbage was of relatively high quality during both trials. When forages were actively growing, CP of grasses ranged from 8.9 to 5.6%, forbs from 17.7 to 8.5%, sagebrush scored at 8.5%, juniper foliage at 8.1% and juniper bark at 3.2%. After herbaceous forages had cured, grass CPs ranged between 6.2 and 3.1%, forbs from 10.4 to 4.4%, shrubs were not sampled and juniper foliage averaged 7.6%. Given the low levels of browsing exhibited by goats on sagebrush and juniper we see little opportunity for control of these woody plants when pastures provide a diverse (N = 25 species) array of readily available (534–572 kg ha−1) and nutritious forages and pastures are lightly stocked (0.63 goats ha−1 month−1). We do need, however, to further explore their potential for control of these species under several other regimes. These include extended trials on more deteriorated rangelands, trials during seasons or conditions where forage is limited and the animal's selective opportunity is restricted and trials in high quality environments on newly established sagebrush and juniper seedlings.  相似文献   

10.
Symbiotic associations between plants and arbuscular mycorrhizal fungi are ubiquitous and ecologically important in many grasslands. Differences in species responses to mycorrhizal colonization can have a significant influence on plant community structure. The growth responses of 36 species of warm- and cool-season tallgrass prairie grasses and 59 tallgrass prairie forbs to arbuscular mycorrhizal (AM) fungal colonization were assessed in greenhouse studies to examine the extent of interspecific variation in host-plant benefit from the symbiosis and patterns of mycorrhizal dependence among host plant life history (e.g., annual, perennial) and taxonomic (e.g., grass, forb, legume, nonlegume) groups and phenological guilds. There was a strong and significant relationship between phenology of prairie grasses and mycorrhizal responsiveness, however this relationship was less apparent in forbs. Perennial warm-season C(4) grasses and forbs generally benefited significantly from the mycorrhizal symbiosis, whereas biomass production of the cool-season C(3) grasses was not affected. The root systems of the cool-season grasses were also less highly colonized by the AM fungi, as compared to the warm-season grasses or forbs. Unlike the native perennials, annuals were generally not responsive to mycorrhizal colonization and were lower in percentage root colonization than the perennial species. Plant growth responsiveness and AM root colonization were positively correlated for the nonleguminous species, with this relationship being strongest for the cool-season grasses. In contrast, root colonization of prairie legumes showed a significant, but negative, relationship to mycorrhizal growth responsiveness.  相似文献   

11.
Two experiments were conducted to investigate species specificity in the neuroendocrine responsiveness of female prairie voles to the copulatory patterns of males. In Experiment 1, prairie vole males mated for one ejaculatory series were not significantly more effective in inducing ovulation in prairie vole females than montane voles mated with prairie vole females for one series, two series, or to satiety. Mating with conspecific males did result in significantly more implanted embryos than did heterospecific matings. In Experiment 2, it was found that, when the amount of vaginal stimulation was both low and equated across groups, prairie vole males were significantly more effective in triggering ovulation in female prairie voles than were either meadow voles or montane voles. Although there appears to be some species specificity to the “vaginal codes” of these congeneric species, its biological significance is unclear.  相似文献   

12.
Abstract.  1. Factors affecting the nutritional ecology of mixed-feeding, polyphagous herbivores are poorly understood. Mixed-feeding herbivores do better when they consume both forb and grass species although they typically feed primarily on forbs, which are of relatively higher protein content than grasses.
2. In a field experiment, we examined the effects of nitrogen and phosphorus fertilization and associated changes in host-plant C:N:P on proportional grass consumption by a mixed-feeding insect herbivore, Melanoplus bivittatus , using natural abundance stable carbon isotope (12C/13C) methods. We also examined a grass-feeding ( Phoetaliotes nebrascensis ) and forb-feeding ( Hesperotettix viridis ) species.
3. The C isotope signatures of M. bivittatus collected from plots fertilized with nitrogen (+N), phosphorus (+P), nitrogen and phosphorus (+N+P) and no fertilizer were compared with the C isotope signatures of plants in those plots to determine the proportion of assimilated C derived from C4 grasses and C3 forbs in each plot. We also examined the relationship between M. bivittatus diets and plant C:N:P stoichiometry.
4. The proportion of grass assimilated approximately doubled in N-fertilized treatments (39.1 ± 0.1%) compared with non-fertilized treatments (19 ± <0.1%), an increase associated with decreased C:N and increased N:P of grasses.
5. These results indicate that mixed-feeding M. bivittatus can selectively feed to balance C:N:P intake even when choosing between two structurally and chemically different groups of plants.
6. The strong relationship between diet selection and grass stoichiometry also suggests that plant nutrient composition may be more important than defensive chemistry in food choice.  相似文献   

13.
Vertebrate herbivores as diverse as ungulates, geese, and rabbits preferentially feed on plants that have previously experienced herbivory. Here, we ask whether smaller grassland “cryptic consumers” such as voles (Microtus ochrogaster and M. pennsylvanicus) preferentially clip (cut stems for access to leaves or seeds) or avoid previously clipped individuals of two tallgrass prairie species (Desmanthus illinoensis and Echinacea purpurea) within a growing season. Further, we ask how these plants respond to repeated clipping within a growing season, and whether the effects of this herbivory last into the subsequent growing season. Voles preferentially clipped stems of D. illinoensis and E. purpurea plants that had been previously clipped. The exception was indiscriminant clipping of stems of E. purpurea late in the growing season when its achenes, a favorite vole food, ripened. For D. illinoensis, repeated clipping resulted in a 59% reduction in biomass, 42% lower ratio of reproductive to vegetative biomass, and 57% fewer seeds produced per plant compared with unclipped plants. These effects lasted into the following growing season in which plants were protected from voles. In contrast, the only effect of repeated clipping for E. purpurea was that the number of achenes per plant was substantially reduced by three episodes of clipping. This effect did not carry over to the next growing season. Such differences in D. illinoensis and E. purpurea response to repeated stem clipping by voles offer insights into how these small rodents can effect major changes in composition and dominance in grassland communities.  相似文献   

14.
Plants growing in diverse communities are believed to exhibit associational resistance to herbivores, but this hypothesis has seldom been tested experimentally for vertebrate herbivores in forest ecosystems. We examined browsing patterns of the two principal mammalian herbivores of Finnish boreal forests, moose and voles, in young stands where tree species diversity and composition were experimentally manipulated. The stands were composed either of monocultures or different 2–5 species mixtures of Norway spruce, Scots pine, Siberian larch, silver birch, and black alder. Voles and moose showed contrasting responses to stand diversity and species composition. In accordance with the predictions of the associational resistance hypothesis, vole damage was higher in tree monocultures than in mixed stands, although stand diversity effects were statistically significant only at one of the three study areas. Voles also damaged more trees in coniferous than in deciduous stands. In contrast, moose browsing tended to increase with the number of tree species in a stand and with the presence of the preferred tree species, birch, in a mixture. The observed differences in vole and moose responses to stand diversity and species composition are likely to be due to different feeding specialisation, foraging patterns, and movement ability of these herbivores. Voles switched to trees only when the supply of a more preferred food (grasses and forbs) was depleted and restricted their feeding choice only to the most palatable tree species regardless of the number of tree species present per stand. In contrast, tree branches and foliage represented an important part of moose diet throughout the year; moose may be able to tolerate secondary plant metabolites of different tree species better than voles and may thus benefit from diet broadening when more tree species are available. Furthermore, the home range size and foraging ability of these two very differently sized herbivores may partly explain the observed differences in utilisation of different tree species. Finally, both moose and voles showed high spatial and temporal variation in their feeding; in particular, vole damage was more influenced by tree species diversity in areas and years with high vole densities. Thus, diversification of forest stands may have very different effects on mammalian browsing depending on the herbivores present, their densities, and the tree species used in reforestation.  相似文献   

15.
《Animal behaviour》1986,34(2):519-526
Paternal care in microtines has been studied infrequently and few studies have compared patterns of direct and indirect paternal investment. The paternal behaviour of three vole species, the meadow vole (Microtus pennsylvanicus), the pine vole (M. pinetorum) and the prairie vole (M. ochrogaster) was examined in a semi-natural setting. Prairie and pine voles were found to exhibit high levels of paternal care. Prairie vole males contributed the most direct care by remaining in the natal nest for long periods of time in contact with the pups. Pine voles contributed less direct care than prairie voles as they spent less time in the natal nest with their offspring. In addition, both prairie and pine vole males were observed to groom their pups and retrieve them back to the nest area. Prairie vole males also engaged in such indirect forms of care as nest construction and maintenance, while pine voles provided indirect care in the form of tunnel construction and food caching. Meadow vole males were the least paternal of the three species and rarely engaged in either direct or indirect care. These findings support predictions that M. pennsylvanicus is promiscuous and that male and female meadow voles occupy separate territories. They are also consistent with studies which indicate that prairie and pine voles are monogamous and have a structured social organization with members interacting closely with one another.  相似文献   

16.
An ecomorphological analysis of the tallgrass prairie of central North America divided representative species of the native grassland flora into eight guilds or groups of species with similar life-form, phenology, and ecology. The guilds, segregated by multivariate analysis, are: (1) warm-season graminoids with Kranz anatomy and the Hatch-Slack photosynthetic pathway (C4 grasses); (2) cool-season graminoids without Kranz anatomy, but with the common Calvin or C3 photosynthetic pathway (C3 grasses and sedges); (3) annuals and biennial forbs; (4) ephemeral spring forbs; (5) spring forbs; (6) summer/fall forbs; (7) legumes; and (8) woody shrubs. The study was based on 158 plant species indigenous to three upland prairie sites in northeastern Kansas. Each species was scored for 32 traits which fall into five broad categories: plant habit, leaf characteristics, stem structures, root structures, and reproductive traits, including phenology. A multivariate, detrended correspondence analysis sorted the 158 species into the eight principal groups or guilds. These groups were further supported by a cluster analysis and discriminant function analysis of the same data set. The discriminant function analysis determined that 94.3% of the species were correctly classified in their respective guilds, and that the guilds were statistically different. Results indicate that guild analysis offers a basis for detailed classification of grassland vegetation that is more ecologically focused than species composition, as the myriad of species (about 1,000 prairie species on the central plains of North America) vary in presence, cover, and importance with their individualistic distribution.Abbreviations C3= C3 photosynthesis - C4= C4 photosynthesis - LSD= least significant difference  相似文献   

17.
Light-saturated CO2-assimilation rates of 19 vascular plant species were measured on a tundra slope in the foothills of the Brooks Range, Alaska. Maximum assimilation capacities on a leaf area basis ranged from 20.3 μmol m−2 s−1 for the forb, Bistorta plumosa , to 6.0 μmol m−2 s−1 for the evergreen, Empetrum hermaphroditicum . Graminoids, deciduous shrubs, and forbs fell within a similar range of maximum photosynthetic rates on a leaf area basis. Evergreens had the lowest rates. On a leaf weight basis, maximum assimilation rates were greatest for forbs, followed by deciduous shrubs, graminoids, and evergreens. Rates of evergreens were less than half those of all other growth forms. Cassiope tetragona had the lowest rates per unit leaf weight of any species tested; mean maximum rates of C. tetragona were only 14% of those of B. plumosa , the species with the highest rates. When the data were subjected to canonical analysis, only a partial correspondence was found between species growth form and photosynthetic characteristics.  相似文献   

18.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

19.
Social behavior of small mammals living under natural conditions often is inferred from live-trapping data, particularly from incidents in which two or more individuals are captured together in a trap. We examined whether multiple-capture data from a long-term study of prairie voles (Microtus ochrogaster) and meadow voles (Microtus pennsylvanicus) were consistent with well-known species differences in social behavior (whereas prairie voles are highly social and display monogamy, meadow voles are less social and promiscuous). When possible, we also examined multiple captures of two nontarget species, northern short-tailed shrews (Blarina brevicauda) and western harvest mice (Reithrodontomys megalotis). Percent of total captures that were multiple captures and percent of total adult captures that were male–female captures were highest for prairie voles and lowest for meadow voles; values for harvest mice and shrews were in between those of the vole species, but more similar to values for meadow voles. Repeat captures of the same male–female pair occurred most commonly in prairie voles, and multiple captures of this species typically involved individuals from the same social group. Multiple captures of adults and juveniles were more common in prairie voles than meadow voles, except for captures of at least one adult male and at least one juvenile, which did not differ between the two vole species. Multiple capture data for prairie voles and meadow voles were largely consistent with established species differences in social behavior, suggesting that such data can provide an accurate indication of social and mating systems of small mammals.  相似文献   

20.
Kugrens  P.  Aguiar  R.  Clay  B.L.  & Lee  R.E. 《Journal of phycology》2000,36(S3):39-39
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture ( P. purpurea and P. umbilicalis ) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub-saturating and saturating irradiances (37 and 289 μmol photons m−2 s−1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g−1 DW min−1), suggesting that P. umbilicalis is a better choice for mass culture where self-shading may be severe. The photosynthesis-irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m−2 s−1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long-term as ready sources of spores for net seeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号