首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, Gram-negative, bacterial strain KIS30-44T was identified from wet forest soil collected on the Korean island of Dokdo. Growth of the strain was observed at 15?C30°C, pH 5?C9, 0?C3% NaCl, and 950 mM KNO3. KIS30-44T reduced nitrate to nitrogen gas. Analysis of the 16S rRNA gene sequence showed that KIS30-44T was phylogenetically related to Burkholderia sacchari, Burkholderia mimosarum, and Burkholderia oxyphila (98.1%, 98.0%, and 98.0% sequence similarity, respectively). The genomic G+C content was 63.5 mol%. KIS30-44T exhibited less than 52% DNA-DNA relatedness with the type strains of 9 closely related Burkholderia species. The major isoprenoid quinone was Q-8. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unknown aminolipids. The major fatty acids in KIS30-44T were C16:0, C18:1 ??7c and summed feature 3 (iso-C15:0 2-OH and C16:1 ??7c), and the strain contained half the amount of C17:0 cyclo found in the 9 closely related Burkholderia species. The results of these phenotypic, 16S rRNA gene sequence, DNA-DNA hybridization, and chemotaxonomic data indicate that KIS30-44T represents a novel species within the genus Burkholderia, for which the name Burkholderia denitrificans (Type strain KIS30-44T =KACC 12733T =DSM 24336T) is proposed.  相似文献   

2.
During a survey of Burkholderia species with potential use in agrobiotechnology, a group of 12 strains was isolated from the rhizosphere and rhizoplane of tomato plants growing in Mexico (Nepantla, Mexico State). A phylogenetic analysis of 16S rRNA gene sequences showed that the strains are related to Burkholderia kururiensis and Burkholderia mimosarum (97.4 and 97.1 %, respectively). However, they induced effective nitrogen-fixing nodules on roots of Phaseolus vulgaris. Based on polyphasic taxonomy, the group of strains represents a novel species for which the name Burkholderia caballeronis sp. nov. is proposed. The type species is TNe-841T (= LMG 26416T = CIP 110324T).  相似文献   

3.
Biosurfactants are a class of functional molecules produced and secreted by microorganisms, which play important roles in cell physiology such as flagellum-dependent or -independent bacterial spreading, cell signaling, and biofilm formation. They are amphipathic compounds and comprise a variety of chemical structures, including rhamnolipids, typically produced by Pseudomonas spp. and also reported within other bacterial genera. The present study is focused on Burkholderia kururiensis KP23T, a trichloroethylene (TCE)-degrading, N-fixing, and plant growth-promoting bacterium. Herein, we describe the production of rhamnolipids by B. kururiensis, and its characterization by LTQ-Orbitrap Hybrid Mass Spectrometry, a powerful tool that allowed efficient identification of molecular subpopulations, due to its high selectivity, mass accuracy, and resolving power. The population of rhamnolipids produced by B. kururiensis revealed molecular species commonly observed in Pseudomonas spp. and/or Burkholderia spp. In addition, this strain was used as a platform for expression of two Pseudomonas aeruginosa biosynthetic enzymes: RhlA, which directly utilizes β-hydroxydecanoyl-ACP intermediates in fatty acid synthesis to generate the HAA, and RhlB, the rhamnosyltransferase 1, which catalyzes the transfer of dTDP-L-rhamnose to β-hydroxy fatty acids in the biosynthesis of rhamnolipids. We show that rhamnolipid production by the engineered B. kururiensis was increased over 600 % when compared to the wild type. Structural analyses demonstrated a molecular population composed mainly of monorhamnolipids, as opposed to wild-type B. kururiensis and P. aeruginosa in which dirhamnolipids are predominant. We conclude that B. kururiensis is a promising biosurfactant-producing organism, with great potential for environmental and biotechnological applications due to its non-pathogenic characteristics and efficiency as a platform for metabolic engineering and production of tailor-made biosurfactants.  相似文献   

4.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20°C at pH 7.0–8.0 and at 2.5–3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C3–4 fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14%) for strain I.9.1T. The G+C contents of their genomic DNA were 45–46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141T and Desulfovibrio marinisediminis JCM 14577T represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98–99%. The level of DNA-DNA hybridization between strains I.8.1T and I.9.1T was 30–38%. The two strains shared 10–26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1T and I.9.1T represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1T = DSM 21390T = JCM 15970T) and D. oceani subsp. galateae (type strain, I.9.1T = DSM 21391T = JCM 15971T).  相似文献   

5.
A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0–9.0 (optimum, pH 7.0), 0–3% (w/v) NaCl (optimum, 0%), and temperature 10–40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.  相似文献   

6.
A Gram-negative, aerobic, short-rod-shaped, non-motile bacterium designated Rs7T, was isolated from peat soil collected from Russia and was characterized to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that the strain Rs7T belongs to the class Betaproteobacteria. The highest degree of sequence similarities were determined to be with Burkholderia tropica Ppe8T (98.4 %), Burkholderia unamae MTI-641T (97.8 %), Burkholderia bannensis E25T (97.7 %), Burkholderia heleia SA41T (97.0 %), and Burkholderia sacchari IPT101T (97.0 %). Chemotaxonomic data revealed that the strain Rs7T possesses ubiquinone Q-8. The polar lipid profile of strain Rs7T contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unknown amino phospholipid. The predominant fatty acids were C16:0, C19:0 cyclo ω8c, and C17:0 cyclo, all of which corroborated the assignment of the strain to the genus Burkholderia. The DNA G+C content was 63.2 mol%. DNA–DNA hybridization experiments showed less than 37.8 % DNA relatedness with closely related type strains, thus confirming separate species status. The results of physiological and biochemical tests allowed phenotypic differentiation of strain Rs7T from the members of the genus Burkholderia. Based on these data, Rs7T (=KEMC 7302-068T = JCM 18069T) should be classified as the type strain for a novel Burkholderia species, for which the name Burkholderia humi sp. nov. is proposed.  相似文献   

7.
A Gram-stain negative, motile, rod-shaped bacterium, designated strain WM-2T, was isolated from a forest soil in Sihui City, South China, and characterized by means of a polyphasic approach. Growth occurred with 0–5 % (w/v) NaCl (optimum 0–1 %) and at pH 5.0–10.5 (optimum pH 8.5) and 4–40 °C (optimum 30 °C) in Luria–Bertani medium. Comparative 16S rRNA gene sequence analyses showed that strain WM-2T is a member of the genus Pseudomonas and most closely related to P. guguanensis, P. oleovorans subsp. lubricantis, P. toyotomiensis, P. alcaliphila and P. mendocina with 97.1–96.6 % sequence similarities. In terms of gyrB and rpoB gene sequences, strain WM-2T showed the highest similarity with the type strains of the species P. toyotomiensis and P. alcaliphila. The DNA–DNA relatedness values of strain WM-2T with P. guguanensis and P. oleovorans subsp. lubricantis was 48.7 and 37.2 %, respectively. Chemotaxonomic characteristics (the main ubiquinone Q-9, major fatty acids C18:1 ω7c/C18:1 ω6c, C16:0 and C16:1 ω7c/C16:1 ω6c and DNA G+C content 65.2 ± 0.7 mol%) were similar to those of members of the genus Pseudomonas. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminophospholipid, an unknown phospholipid and five unknown lipids. According to the results of polyphasic analyses, strain WM-2T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas sihuiensis sp. nov. is proposed. The type strain is WM-2T (=KCTC 32246T=CGMCC 1.12407T).  相似文献   

8.
A taxonomic study was carried out on strain 22II-S10r2T, which was isolated from the deep sea sediment of the Atlantic Ocean using oil-degrading enrichment. The bacterium was Gram-negative, oxidase positive and catalase negative, spherical in shape, and motile by polar flagella. Growth was observed at salinities of 0.5–7 % and at temperatures of 10–41 °C. The isolate was capable of aesculin hydrolysis, but unable to reduce nitrate to nitrite or degrade Tween 80 or gelatine. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S10r2T belonged to the family Ectothiorhodospiraceae, with highest sequence similarity to Thioalkalivibrio sulfidiphilus HL-EbGR7T (90.9 % similarity). The principal fatty acids were Sum In Feature 8 (C18:1 ω7c/ω6c (29.9 %), C18:1 ω9c (13.5 %), C16:1 ω5c (12.3 %), C12:03OH (6.8 %), C18:1 ω5c (5.7 %) and C16:0 (5.3 %). The G+C content of the chromosomal DNA was 60.7 mol%. The respiratory quinone was determined to be Q-7 (25 %) and Q-8 (75 %). Phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid, glycolipid, three phospholipids and lipid were present. The strain was aerobic, non-phototrophic and non-chemolithoautotrophic. The combined genotypic and phenotypic data show that strain 22II-S10r2T represents a novel species within a novel genus, for which the name Maricoccus atlantica gen. nov. sp. nov. is proposed, with the type strain 22II-S10r2T (=CGMCC NO.1.12317T = LMG 27155T = MCCC 1A09384T).  相似文献   

9.
Two Gram-negative, non-spore-forming, oval to pear shaped motile strains, designated 25B14_1T and BH-BN04-4T, isolated from surface seawater from the Bering Sea and Chukchi Sea, respectively, were subjected to polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strains 25B14_1T and BH-BN04-4T clustered together with Hyphomonas atlanticus 22II1-22F38T and Hyphomonas oceanitis DSM 5155T, respectively, within genus Hyphomonas. Based on whole genome sequence analysis, the calculated DDH and ANIm values between strain 25B14_1T and BH-BN04-4T are 18.8 and 83.19 % respectively. The calculated DDH values of strain 25B14_1T and BH-BN04-4T with seven type strains ranged from 18.2 to 19.9 % and from 18.4 to 40.4 %, respectively. The ANIm values of strain 25B14_1T and BH-BN04-4T with seven type strains ranged from 83.00 to 84.67 % and from 83.14 to 90.58 %, respectively. Both isolates were found to contain Q-11 as the predominant respiratory quinone. The major fatty acids of strain 25B14_1T were identified as C16:0, C17:0, C18:1 ω7c-methyl and Summed Feature 8 (C18:1 ω6c/ω7c as defined by MIDI), while in the case of strain BH-BN04-4T they were identified as C16:0, C18:1 ω7c-methyl and Summed Feature 8 (C18:1 ω6c/ω7c). The G+C contents of 25B14_1T and BH-BN04-4T were determined to be 58.4 and 61.0 mol%, respectively. The combined phenotypic and genotypic data show that the two isolates each represent novel species of the genus Hyphomonas, for which the names Hyphomonas beringensis sp. nov. and Hyphomonas chukchiensis sp. nov. are proposed, with the type strain 25B14_1T (=MCCC 1A07321T = LMG 27914T) and BH-BN04-4T (=MCCC 1A07481T = LMG 27915T), respectively.  相似文献   

10.
A Gram-staining-negative, rod-shaped and motile with several polar flagellums bacterium, designated WM-3T, was isolated from a rice paddy soil in South China. Growth occurred with 0–3.0 % (w/v) NaCl (optimum 2.0 %), at pH 5.5–9.0 (optimum pH 7.0) and at 25–42 °C (optimum 30–37 °C) in liquid Reasoner’s 2A medium. Analysis of the 16S rRNA gene and gyrB gene sequences revealed that strain WM-3T was most closely related to the type strains of the species Pseudomonas linyingensis and Pseudomonas sagittaria. Its sequence similarities with P. linyingensis CGMCC 1.10701T and P. sagittaria JCM 18195T were 97.4 and 97.3 %, respectively, for 16S rRNA gene, and were 94.1 and 94.2 %, respectively, for gyrB gene. DNA–DNA hybridization between strain WM-3T and these two type strains showed relatedness of 35.6 and 30.9 %, respectively. G+C content of genomic DNA was 69.4 mol%. The whole-cell fatty acids mainly consisted of C16:0 (30.0 %), C16:1 ω6c and/or C16:1 ω7c (19.3 %) and C18:1 ω6c and/or C18:1 ω7c (16.3 %). The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain WM-3T belongs to genus Pseudomonas but represents a novel species, for which the name Pseudomonas oryzae sp. nov. is proposed. The type strain is WM-3T (=KCTC 32247T =CGMCC 1.12417T).  相似文献   

11.
A Gram-negative, aerobic, motile rod strain, designated Ma-20T, was isolated from a pool of marine Spirulina platensis cultivation, Sanya, China, and was subjected to a polyphasic taxonomy study. Strain Ma-20T can grow in the presence of 0.5–11 % (w/v) NaCl, 10–43 °C and pH 6–10, and grew optimally at 30 °C, pH 7.5–9.0 in natural seawater medium. The polar lipids were composed of phosphatidylethanolamine, three unidentified phospholipids and three unidentified polar lipids. The respiratory quinone was ubiquinone 8 (Q-8) and the major fatty acids were C18:1ω6c/C18:1ω7c (summed feature 8, 32.84 %), C16:1ω6c/C16:1ω7c (summed feature 3, 30.76 %), C16:0 (13.54 %), C12:03-OH (4.63 %), and C12:0 (4.09 %). The DNA G+C content of strain Ma-20T was 58 mol %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Ma-20T belonging to Gammaproteobacteria, it shared 88.46–91.55 and 89.21–91.26 % 16S rRNA gene sequence similarity to the type strains in genus Hahella and Marinobacter, respectively. In addition to the large 16S rRNA gene sequence difference, Ma-20T can also be distinguished from the reference type strains Hahella ganghwensis FR1050T and Marinobacter hydrocarbonoclasticus sp. 17T by several phenotypic characteristics and chemotaxonomic properties. On the basis of phenotypic, chemotaxonomic and phylogenetic properties, strain Ma-20T is suggested to represent a novel species of a new genus in Gammaproteobacteria, for which the name Nonhongiella spirulinensis gen. nov., sp. nov. is proposed. The type strain is Ma-20T (=KCTC 32221T=LMG 27470T).  相似文献   

12.
A Gram-negative, strictly aerobic, non-motile, non-spore-forming and rod-shaped bacterial strain designated KHI67T was isolated from sediment of the Gapcheon River in South Korea and its taxonomic position was investigated by using a polyphasic approach. Strain KHI67T was observed to grow optimally at 25–30 °C and at pH 7.0 on nutrient and R2A agar. On the basis of 16S rRNA gene sequence similarity, strain KHI67T was shown to belong to the family Sphingomonadaceae and was related to Sphingomonas faeni MA-olkiT (97.6 % sequence similarity), Sphingomonas aerolata NW12T (97.5 %) and Sphingomonas aurantiaca MA101bT (97.3 %). The G + C content of the genomic DNA was determined to be 65.6 %. The major ubiquinone was found to be Q-10, the major polyamine was identified as homospermidine and the major fatty acids identified were summed feature 8 (comprising C18:1 ω7c/ω6c; 37.0 %), C16:0 (13.0 %), summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c; 12.8 %) and C14:0 2OH (9.3 %). DNA and chemotaxonomic data supported the affiliation of strain KHI67T to the genus Sphingomonas. The DNA–DNA relatedness values between strain KHI67T and its closest phylogenetic neighbours were below 15 %. Strain KHI67T could be differentiated genotypically and phenotypically from the recognised species of the genus Sphingomonas. The isolate therefore represents a novel species, for which the name Sphingomonas ginsenosidivorax sp. nov. is proposed, with the type strain KHI67T (=KACC 14951T = JCM 17076T = LMG 25801T).  相似文献   

13.
Heavy-metal-tolerant bacteria, GIMN1.004T, was isolated from mine soils of Dabaoshan in South China, which were acidic (pH 2–4) and polluted with heavy metals. The isolation was Gram-negative, aerobic, non-spore-forming, and rod-shaped bacteria having a cellular width of 0.5−0.6 µm and a length of 1.3−1.8 µm. They showed a normal growth pattern at pH 4.0–9.0 in a temperature ranging from 5°C to 40°C.The organism contained ubiquinone Q-8 as the predominant isoprenoid quinine, and C16∶0, summed feature 8 (C18∶1 ω7c and C18∶1 ω6c), C18∶0, summed feature 3 (C16∶1 ω7c or iso-C15∶0 2-OH), C17∶0 cyclo, C18∶1 ω9c, C19∶0 cyclo ω8c, C14∶0 as major fatty acid. These profiles were similar to those reported for Burkholderia species. The DNA G+C % of this strain was 61.6%. Based on the similarity to 16S rRNA gene sequence, GIMN1.004T was considered to be in the genus Burkholderia. The similarities of 16S rRNA gene sequence between strain GIMN1.004T and members of the genus Burkholderia were 96−99.4%, indicating that this novel strain was phylogenetically related to members of that genus. The novel strain showed the highest sequence similarities to Burkholderia soli DSM 18235T (99.4%); Levels of DNA-DNA hybridization with DSM 18235T was 25%. Physiological and biochemical tests including cell wall composition analysis, differentiated phenotype of this strain from that closely related Burkholderia species. The isolation had great tolerance to cadmium with MIC of 22 mmol/L, and adsorbability of 144.94 mg/g cadmium,and it was found to exhibit antibiotic resistance characteristics. The adsorptive mechanism of GIMN1.004T for cadmium depended on the action of the amide,carboxy and phosphate of cell surface and producing low-molecular-weight (LMW ) organic acids to complex or chelated Cd2+.Therefore, the strain GIMN1.004T represented a new cadmium resistance species, which was tentatively named as Burkholderia dabaoshanensis sp. nov. The strain type is GIMN1.004T ( = CCTCC M 209109T =  NRRL B-59553T ).  相似文献   

14.
A Gram-negative, short rod-shaped, floc-forming bacterial strain J5-66T without any flagellum was isolated from coking wastewater collected from Shaoguan, Guangdong, China. It was capable of optimal growth at pH 7, 30 °C, and 1–2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the genus Ottowia in Comamonadaceae, and the highest 16S rRNA gene sequence similarity was 96.2 % with Ottowia pentelensis DSM 21699T. The major cellular fatty acids of strain J5-66T were C16:1 ω7c/C16:1 ω6c (45.0 %), C16:0 (21.1 %), C18:1 ω7c or/and C18:1 ω6c (19.2 %). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, glycolipid and two unidentified phospholipids (PL1 and PL2). The predominant ubiquinone was Q-8, and the G+C content of the genome DNA was 64.4 mol%. On the basis of genetic, phenotypic and chemotaxonomic analyses, strain J5-66T represents a novel species of the genus Ottowia for which the name Ottowia shaoguanensis sp. nov. is proposed. The type strain is J5-66T (=CGMCC 1.12431T =LMG 27408T).  相似文献   

15.
A non-pigmented, motile, Gram-negative bacterium designated H 17T was isolated from a seawater sample collected in Port Phillip Bay (the Tasman Sea, Pacific Ocean). The new organism displayed optimal growth between 4 and 37 °C, was found to be neutrophilic and slightly halophilic, tolerating salt water environments up to 10 % NaCl. Strain H 17T was found to be able to degrade starch and Tween 80 but unable to degrade gelatin or agar. Phosphatidylglycerol (27.7 %) and phosphatidylethanolamine (72.3 %) were found to be the only associated phospholipids. The major fatty acids identified are typical for the genus Alteromonas and include C16:0, C16:1ω7, C17:1ω8 and C18:1ω7. The G+C content of the DNA was found to be 43.4 mol%. A phylogenetic study, based on the 16S rRNA gene sequence analysis and Multilocus Phylogenetic Analysis, clearly indicated that strain H 17T belongs to the genus Alteromonas. The DNA?DNA relatedness between strain H 17T and the validly named Alteromonas species was between 30.7 and 46.4 mol%. Based on these results, a new species, Alteromonas australica, is proposed. The type strain is H 17T (= KMM 6016T = CIP 109921T).  相似文献   

16.
A new bacterial strain, designated as FF42T, was isolated from feces of domestic pigs—collected from Suwon, Korea—and was characterized to determine its taxonomic position. Strain FF42T was observed to be Gram negative, aerobic, non-spore forming, motile, and rod-shaped cells. Based on the phylogenetic and 16S rRNA sequence analyses, it was revealed that strain FF42T belonged to the genus Comamonas. The highest degree of sequence similarities was determined to be with Comamonas zonglianii BF-3T (96.3 %), Comamonas composti CC-YY287T (96.1 %), and Comamonas nitrativorans 23310T (95.9 %), while showing less than 95.6 % identity with the remaining Comamonas species. Growth of strain FF42T occurred between 25 and 40 °C (optimum, 28 °C) and at pH of 5-9 (optimum, pH 6.0). It grew in the presence of 0–3 % (w/v) NaCl while minimally tolerating at 3 % (w/v) NaCl. Biochemical and physiological tests revealed phenotypic differentiation of strain FF42T to other members of the genus Comamonas. The predominant quinone is ubiquinone (Q-8). The major cellular fatty acids were C10:0 3OH, C16:0, summed feature 3 (C16:1 ω7c/C16:1 ω6c), and summed feature 8 (C18:1 ω6c/C18:1 ω7c), all of which have previously been reported to occur in the species of the genus Comamonas. The G+C molar content for strain FF42T is 60.2 mol %. Based on phylogenetic and phenotypic analyses, strain FF42T (=KEMC 1002-058T=JCM 17561T) is clearly referred to be a novel species for the genus Comamonas, for which the name Comamonas faecalis sp. nov. is proposed.  相似文献   

17.
A taxonomic study was carried out on a novel aerobic bacterial strain (designated CC-LY736T) isolated from a fermentor in Taiwan. Cells of strain CC-LY736T were Gram-stain negative, spiral-shaped and motile by means of a monopolar flagellum. Strain CC-LY736T shared the greatest degree of 16S rRNA gene sequence similarity to Azospirillum irakense DSM 11586T (97.2 %), Rhodocista centenaria JCM 21060T (96.3 %) and Rhodocista pekingensis JCM 11669T (96.1 %). The major fatty acids were C16:0, C16:1 ω5c, C19:0 cyclo ω8c, C18:1 ω7c/C18:1 ω6c, C16:0 3-OH and C18:1 2-OH. The predominant polar lipids included phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidyldimethylethanolamine and two unidentified glycolipids. The common major respiratory quinone was ubiquinone Q-10 and predominant polyamines were sym-homospermidine and putrescine. The DNA G+C content of strain CC-LY736T was 67.6 ± 0.1 mol %. During phylogenetic analysis, strain CC-LY736T formed a unique phyletic lineage associated with Rhodocista species. However, the combination of genetic, chemotaxonomic and physiological data clearly indicated that strain CC-LY736T was a novel representative of the family Rhodospirillaceae. Based on the polyphasic comparison, the name Niveispirillum fermenti gen. nov., sp. nov. is proposed; the type strain of the type species is CC-LY736T (= BCRC 80504T = LMG 27263T). In addition, the reclassifications of Azospirillum irakense as Niveispirillum irakense comb. nov. (type strain KBC1T = ATCC 51182T = BCRC 15764T = CIP 103311T), and Azospirillum amazonense as Nitrospirillum amazonense gen. nov., sp. nov. (type strain Am14T = ATCC 35119T = BCRC 14279T = DSM 3787T) are proposed based on the polyphasic taxonomic data obtained in this study.  相似文献   

18.
A Gram-stain negative, short rod-shaped aerobic bacterium with flagella, designated strain Y32T, was isolated from coastal seawater in Xiamen, Fujian Province of China. 16S rRNA gene sequence comparisons showed that strain Y32T is a member of the family Oceanospirillaceae, forming a distinct lineage with species of the genus Litoribacillus. The 16S rRNA gene sequence similarities between strain Y32T and other strains were all less than 94.0 %. Strain Y32T was found to grow optimally at 28 °C, at pH 7.0–8.0 and in the presence of 4–5 % (w/v) NaCl. The major fatty acids were identified as Summed Feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c, 49.4 %), C16:0 (17.7 %), C14:0 (6.9 %) and C18:1 ω9c (5.4 %). The major respiratory quinone was identified as ubiquinone-8 (Q-8). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain Y32T was determined to be 55.6 mol%. According to its morphology, physiology, fatty acid composition, polar lipids composition and 16S rRNA gene sequence data, strain Y32T represents a novel species of a new genus in the family Oceanospirillaceae, for which the name Litoribrevibacter albus gen. nov. sp. nov. is proposed. The type strain of Litoribrevibacter albus is Y32T (=MCCC 1F01211T=NBRC 110071T).  相似文献   

19.
A Gram-negative, non-spore-forming, aerobic, motile and rod-shaped or ovoid bacterial strain, designated MA1-3T, was isolated from a sea squirt (Halocynthia roretzi) collected from the South sea in South Korea. Strain MA1-3T was found to grow optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain MA1-3T fell within the clade comprising Colwellia species, clustering coherently with the type strains of Colwellia aestuarii, Colwellia polaris and Colwellia chukchiensis, showing sequence similarity values of 97.2, 96.4 and 95.6 %, respectively. It exhibited 16S rRNA gene sequence similarity values of 93.9–96.1 % to the type strains of the other Colwellia species. Strain MA1-3T was found to contain Q-8 as the predominant ubiquinone and C16:1 ω7c and/or C16:1 ω6c, C16:0 and C16:1 ω9c as the major fatty acids. The DNA G+C content of strain MA1-3T was determined to be 39.1 mol% and its mean DNA–DNA relatedness value with the type strain of C. aestuarii was 13 ± 5.4 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that the novel strain is separated from other Colwellia species. On the basis of the data presented, strain MA1-3T is considered to represent a novel species of the genus Colwellia, for which the name Colwellia meonggei sp. nov. is proposed. The type strain is MA1-3T (=KCTC 32380T = CECT 8302T).  相似文献   

20.
A Gram-negative, rod-shaped, non-spore-forming aerobic bacterium, motile with a single polar flagellum, strain JLT2005T, was isolated from surface seawater collected from the East China Sea and formed ivory white colonies on a rich organic medium. The strain was positive for catalase, oxidase, and urease. It grew in the presence of 0–12 % (w/v) NaCl (optimum 5 %), at 20–35 °C (optimum 25 °C), or at pH 6–10 (optimum pH 9). The major fatty acids (>10 %) were C18:1ω7c, C19:0ω8c cyclo, C16:0, and C18:0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and five unidentified glycolipids. Ubiquinone-10 and Ubiquinone-11 were present as the major quinones. The DNA G+C content was 74.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JLT2005T belongs to the genus Pelagibacterium in the family Hyphomicrobiaceae, class Alphaproteobacteria. The closest neighbors were Pelagibacterium halotolerans B2T (98.7 % similarity) and Pelagibacterium luteolum 1_C16_27T (97.1 % similarity). DNA–DNA relatedness values of strain JLT2005T with P. halotolerans B2T and with P. luteolum 1_C16_27T were 31.6 and 25 %. Evidence from genotypic, chemotaxonomic, and phenotypic data shows that strain JLT2005T represents a novel species of the genus Pelagibacterium, for which the name Pelagibacterium nitratireducens sp. nov is proposed. The type strain is JLT2005T (=CGMCC 1.10829T =JCM 17767T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号