首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombospondins (TSPs) -1 and -2 were among the first protein inhibitors of angiogenesis to be identified, a property that was subsequently attributed to the interactions of sequences in their type I repeats with endothelial cell-surface receptors. The interactions of TSPs-1 and -2 with cell-surface receptors, proteases, growth factors, and other bioactive molecules, coupled with the absence of direct structural functions that can be attributed to these matrix proteins, qualify them for inclusion in the category of ‘matricellular proteins’. The phenotypes of TSP-1, TSP-2, and double TSP-1/2-null mice confirm the roles that these proteins play in the regulation of angiogenesis, and provide clues to some of the other important functions of these multi-domain proteins. One of these functions is the ability of TSP-1 to activate the latent TGFβ1 complex, a property that is not shared by TSP-2. A major pathway by which TSP1 or TSP2 inhibits angiogenesis involves an interaction with CD 36 on endothelial cells, which leads to apoptosis of both the liganded and adjacent cells. However a homeostatic mechanism, which inhibits endothelial cell proliferation, and may be physiologically preferable under some circumstances, has also been elucidated, and involves interaction with the very low density lipoprotein receptor (VLDLR). The interaction of TSP1with its receptor, CD47, further inhibits angiogenesis by antagonizing nitric oxide signaling in endothelial and vascular smooth muscle cells. Paradoxically, there is also evidence that TSP-1 can function to promote angiogenesis. This apparent contradiction can be explained by the presence of sequences in different domains of the protein that interact with different receptors on endothelial cells. The anti-angiogenic function of TSPs has spurred interest in their use as anti-tumor agents. Currently, peptide mimetics, based on sequences in the type I repeats of TSPs that have been shown to have anti-angiogenic properties, are undergoing clinical testing.  相似文献   

2.
Thrombospondins (TSPs) are extracellular regulators of cell-matrix interactions and cell phenotype. The most highly conserved region of all TSPs are the calcium-binding type 3 (T3) repeats and the C-terminal globular domain (CTD). The crystal structure of a cell-binding TSP-1 fragment, spanning three T3 repeats and the CTD, reveals a compact assembly. The T3 repeats lack secondary structure and are organised around a core of calcium ions; two DxDxDGxxDxxD motifs per repeat each encapsulate two calcium ions in a novel arrangement. The CTD forms a lectin-like beta-sandwich and contains four strictly conserved calcium-binding sites. Disruption of the hairpin structure of T3 repeats 6 and 7 decreases protein secretion and stability. The availability for cell attachment of an RGD motif in T3 repeat 7 is modulated by calcium loading. The central architectural role of calcium explains how it is critical for the functions of the TSP C-terminal region. Mutations in the T3 repeats of TSP-5/COMP, which cause two human skeletal disorders, are predicted to disrupt the tertiary structure of the T3-CTD assembly.  相似文献   

3.
The amino-terminal domain of the extracellular matrix (ECM) protein thrombospondin-1 (TSP-1) mediates binding to cell surface heparan sulfate proteoglycans (HSPG) as well as binding to the endocytic receptor, low density lipoprotein-related protein (LRP-1). We previously found that recombinant TSP-1 containing the amino-terminal residues 1-214, retained both of these interactions (Mikhailenko et al. [1997]: J Biol Chem 272:6784-6791). Here, we examined the activity of a recombinant protein containing amino-terminal residues 1-90 of TSP-1 and found that this domain did not retain high-affinity heparin-binding. The loss of heparin-binding correlated with decreased binding to the fibroblast cell surface. However, both ligand blotting and solid phase binding studies indicate that this truncated fragment of TSP-1 retained high-affinity binding to LRP-1. Consistent with this, it also retained the ability to block the uptake and degradation of (125)I-TSP-1. However, TSP-1(1-90) itself was poorly endocytosed and this truncated amino-terminal domain was considerably more effective than the full-length heparin-binding domain (HBD) of TSP-1 in blocking the catabolism of endogenously expressed TSP-1. These results indicate that TSP-1 binding to LRP-1 does not require prior or concomitant interaction with cell surface HSPG but suggest subsequent endocytosis requires high-affinity heparin-binding.  相似文献   

4.
Blastomyces adhesin-1 (BAD-1) is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1) type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1.  相似文献   

5.
6.
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.  相似文献   

7.
We investigated possible regulatory effects of thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, on cytokine release from macrophages. Immobilized TSP-1 enhanced IL-6 release from the human monocytic U937 cells stimulated with phorbol myristate acetate and LPS, whereas it inhibited IL-10 release. The 70-kDa fragment of TSP-1 containing the type 1 repeats showed the same regulatory effects. The enhanced IL-6 release by TSP-1 was inhibited by anti-CD36 antibody or antibody against the sequence of the binding site to CD36 in the type 1 repeats of TSP-1. Conversely, the decrease in IL-10 release by TSP-1 was strengthened by the blocking of the interaction between CD36 and TSP-1. Furthermore, the involvement of TGF-beta1 in the inhibition of IL-10 release by TSP-1 was indicated by the facts that (i) TSP-1 induced activation of TGF-beta1 produced by the U937 cells, (ii) exogenously added TGF-beta1 inhibited IL-10 release, and (iii) antibody against TGF-beta1 blocked the inhibition of IL-10 release by TSP-1. Together, the present findings suggest that TSP-1 enhances IL-6 release from macrophages by interaction with CD36, whereas IL-10 release is regulated by the balance between the enhancing effect of TSP-1 via CD36 and the suppressive effect by TSP-1-activated TGF-beta1.  相似文献   

8.
Thrombospondin-1 (TSP-1) is an extracellular matrix glycoprotein that may play important roles in the morphogenesis and repair of skeletal muscle. To begin to explore the role of thrombospondin-1 in this tissue, we have examined the interactions of three rodent skeletal muscle cell lines, C2C12, G8, and H9c2, with platelet TSP-1. The cells secrete thrombospondin and incorporate it into the cell layer in a distribution distinct from that of fibronectin. Myoblasts attach and spread on fibronectin- or thrombospondin-coated substrates with similar time and concentration dependencies. Whereas cells adherent on fibronectin organize actin stress fibers, cells adherent on TSP-1 display prominent membrane ruffles and lamellae that contain radial actin microspikes. Attachment to thrombospondin-1 or the 140-kDa tryptic fragment is mediated by interactions with the type 1 repeats and the carboxy-terminal globular domain. Attachment is not inhibited by heparin, GRGDSP peptide, or VTCG peptide but is inhibited by chondroitin sulphate A. Integrins of the beta 1 or alpha V subgroups do not appear to be involved in myoblast attachment to TSP-1; instead, this process depends in part on cell surface chondroitin sulphate proteoglycans. Whereas the central 70-kDa chymotryptic fragment of TSP-1 does not support myoblast attachment, the carboxy-terminal domain of TSP-1 expressed as a fusion protein in the bacterial expression vector, pGEX, supported myoblast attachment to 30% the level of intact TSP-1. Thrombospondin-4 (TSP-4) is also present in skeletal muscle and a fusion protein containing the carboxy-terminal domain of TSP-4 also supported myoblast adhesion, although this protein was less active on a molar basis than the TSP-1 fusion protein. Thus, the carboxyterminal domain of TSP-1 appears to contain a primary attachment site for myoblasts, and this activity is present in a second member of the thrombospondin family.  相似文献   

9.
Thrombospondin-1 (TSP-1) is a multidomain protein that has been implicated in cell adhesion, motility, and growth. Some of these functions have been localized to the three thrombospondin type 1 repeats (TSRs), modules of approximately 60 amino acids in length with conserved Cys and Trp residues. The Trp residues occur in WXXW patterns, which are the recognition motifs for protein C-mannosylation. This modification involves the attachment of an alpha-mannosyl residue to the C-2 atom of the first tryptophan. Analysis of human platelet TSP-1 revealed that Trp-368, -420, -423, and -480 are C-mannosylated. Mannosylation also occurred in recombinant, baculovirally expressed TSR modules from Sf9 and "High Five" cells, contradictory to earlier reports that such cells do not carry out this reaction. In the course of these studies it was appreciated that the TSRs in TSP-1 undergo a second form of unusual glycosylation. By using a novel mass spectrometric approach, it was found that Ser-377, Thr-432, and Thr-489 in the motif CSX(S/T)CG carry the O-linked disaccharide Glc-Fuc-O-Ser/Thr. This is the first protein in which such a disaccharide has been identified, although protein O-fucosylation is well described in epidermal growth factor-like modules. Both C- and O-glycosylations take place on residues that have been implicated in the interaction of TSP-1 with glycosaminoglycans or other cellular receptors.  相似文献   

10.
Thrombospondin (TSP-1) is a large glycoprotein secreted by platelets and synthesized by many cell types, including endothelial and tumor cells. Although controversy exists about the biological function of TSP-1, the following observations suggest that TSP-1 may potentiate tumor progression. (1) Tumor metastases in mice are promoted by TSP-1 and inhibited by anti-TSP-1 antibodies. (2) TSP-1 promotes tumor cell adhesion, migration and invasion. (3) TSP-1 promotes angiogenesis in the rat aorta model. (4) TSP-1 up-regulates the plasminogen activator system through a mechanism involving the activation of TGF-β1. (5) Human tumors express increased levels of the CSVTCG-specific TSP-1 receptor. (6) Tumor stroma is enriched in TSP-1. (7) Cancer patients have high blood levels of TSP-1. (8) Poor patient survival correlates with a higher expression of the CSVTCG-specific TSP-1 receptor on tumor cells. In this paper we discuss the evidence that TSP-1 promotes tumor progression and present a hypothetical scheme for its mechanism of action.  相似文献   

11.
Thrombospondin-1 (TSP-1) contains three type 1 repeats (TSRs), which mediate cell attachment, glycosaminoglycan binding, inhibition of angiogenesis, activation of TGFbeta, and inhibition of matrix metalloproteinases. The crystal structure of the TSRs reported in this article reveals a novel, antiparallel, three-stranded fold that consists of alternating stacked layers of tryptophan and arginine residues from respective strands, capped by disulfide bonds on each end. The front face of the TSR contains a right-handed spiral, positively charged groove that might be the "recognition" face, mediating interactions with various ligands. This is the first high-resolution crystal structure of a TSR domain that provides a prototypic architecture for structural and functional exploration of the diverse members of the TSR superfamily.  相似文献   

12.
Can neuronal networks produce patterns of activity with millisecond accuracy? It may seem unlikely, considering the probabilistic nature of synaptic transmission. However, some theories of brain function predict that such precision is feasible and can emerge from the non-linearity of the action potential generation in circuits of connected neurons. Several studies have presented evidence for and against this hypothesis. Our earlier work supported the precision hypothesis, based on results demonstrating that precise patterns of synaptic inputs could be found in intracellular recordings from neurons in brain slices and in vivo. To test this hypothesis, we devised a method for finding precise repeats of activity and compared repeats found in the data to those found in surrogate datasets made by shuffling the original data. Because more repeats were found in the original data than in the surrogate data sets, we argued that repeats were not due to chance occurrence. Mokeichev et al. (2007) challenged these conclusions, arguing that the generation of surrogate data was insufficiently rigorous. We have now reanalyzed our previous data with the methods introduced from Mokeichev et al. (2007). Our reanalysis reveals that repeats are statistically significant, thus supporting our earlier conclusions, while also supporting many conclusions that Mokeichev et al. (2007) drew from their recent in vivo recordings. Moreover, we also show that the conditions under which the membrane potential is recorded contributes significantly to the ability to detect repeats and may explain conflicting results. In conclusion, our reevaluation resolves the methodological contradictions between Ikegaya et al. (2004) and Mokeichev et al. (2007), but demonstrates the validity of our previous conclusion that spontaneous network activity is non-randomly organized.  相似文献   

13.
14.
The thrombospondins   总被引:8,自引:0,他引:8  
Thrombospondin-1 (TSP-1) was studied in the 1980s as a major component of platelet alpha-granules released upon platelet activation and also as a cell adhesion molecule. In 1993, we published a short review that discussed the exciting identification by molecular cloning of four additional vertebrate gene products related to TSP-1 [Current Biology 3 (1993) 188]. We put forward a structurally based classification for the newly identified proteins and discussed the functional and evolutionary implications of the new gene family. Since that time, the depth and breadth of knowledge on vertebrate TSPs and their functions in cells and tissues in health and disease has expanded into important new areas. Of particular interest is the new knowledge on the complex, domain and cell-type specific effects of TSPs on cell-signaling and cell-adhesion behaviour, the roles of TSP-1 and TSP-2 as anti-angiogenic agents, the roles of TSP-1 and TSP-2 in wound-healing, and associations of point mutations and polymorphisms in TSP-1, TSP-4 and TSP-5/COMP with human genetic diseases. The TSP family also now includes invertebrate members. In this article, we give the 2004 view on TSPs and our perspectives on the significant challenges that remain. Other articles in this issue discuss the functions of vertebrate TSPs in depth.  相似文献   

15.
16.
Thrombospondin-1 (TSP-1) is a matrix protein that has been implicated in mechanisms of tumor progression. Our laboratory previously showed that the CSVTCG (cys-ser-val-thr-cys-gly) sequence of TSP-1 functioned as a tumor cell adhesion domain and CSVTCG peptides as well as an anti-peptide antibody possessed anti-metastatic activity in a murine model of lung metastasis. In a subsequent study, a putative TSP-1 binding protein from lung carcinoma was isolated by CSVTCG-peptide affinity chromatography. In this study, we present the full-length cDNA of this binding protein isolated from a prostate cancer cell (PC3-NI) cDNA library. The purified recombinant protein, termed angiocidin, is a potent inhibitor of tumor growth of Lewis Lung carcinoma in vivo and tumor invasion and angiogenesis in vitro. In addition, the recombinant protein inhibits tumor and endothelial cell proliferation and induces apoptosis. The activity of angiocidin both in vivo and in vitro is partially dependent on its TSP-1 binding activity, since an angiocidin deletion mutant missing a high affinity-binding site for TSP-1 failed to inhibit tumor growth in vivo and was less active in its anti-tumor and anti-angiogenic activities in vitro. These results suggest that the anti-tumor activity of TSP-1 reported in many studies may be mediated in part by binding proteins such as angiocidin. Such proteins may function as tumor-suppressor proteins, which limit the growth of tumors by inhibiting angiogenesis and cell matrix interaction.  相似文献   

17.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

18.
Integrated retroviral DNA is flanked by short direct repeats of the target DNA. The length of these repeats is specific for the provirus that is integrated (H.E. Varmus, in J.A. Shapiro, ed., Mobile Genetic Elements, 1983). For the human immunodeficiency virus type I (HIV-1), the length of the direct repeats in the target DNA was shown to be 5 bp in one case (Muesing et al., Nature [London] 313:450-458, 1985) and 7 bp in another (Starcich et al., Science 227:538-540, 1985). One possible explanation for this discrepancy is that the direct repeats flanking HIV-1 proviruses are variable. To investigate this, we analyzed the junctions between HIV-1 proviral DNA and human DNA from nine individual clones. In each clone the provirus was flanked by a 5-bp direct repeat of human DNA. Analysis of the proviral clone previously described as being flanked by a 7-bp direct repeat of target DNA (Starcich et al., op. cit.) revealed that this clone was flanked by a 5-bp repeat instead. Therefore, we conclude that HIV-1 proviruses are flanked by 5-bp direct repeats of human DNA. The sequences of the 5-bp duplications from the different proviral clones do not have any apparent similarity to each other or to HIV-1 DNA.  相似文献   

19.
The chemotactic activity of C5a and C5a des Arg can be enhanced significantly by the vitamin D-binding protein (DBP), also known as Gc-globulin. DBP is a multifunctional 56-kDa plasma protein that binds and transports several diverse ligands. The objective of this study was to investigate the mechanisms by which DBP functions as a chemotactic cofactor for C5a using neutrophils and U937 cells transfected with the C5aR (U937-C5aR cells). The results demonstrate that U937-C5aR cells show C5a chemotactic enhancement only to DBP in serum, but, unlike mature neutrophils, this cell line cannot respond to DBP in plasma or to purified DBP. Analysis by SDS-PAGE and isoelectric focusing revealed no structural difference between DBP in serum compared with DBP in plasma. However, plasma supplemented with either serum, DBP-depleted serum, or activated platelet releasate provides a required factor and permits DBP to function as a chemotactic cofactor for C5a. Fractionation of activated platelet releasate revealed that the additional factor possessed the properties of thrombospondin-1 (TSP-1). Finally, purified TSP-1 alone could reproduce the effect of serum or platelet releasate, whereas Abs to TSP-1 could block these effects. These results provide clear evidence that TSP-1 is needed for DBP to function as a chemotactic cofactor for C5a.  相似文献   

20.
Thrombospondins-1 and -2 (TSP-1, TSP-2) are matricellular glycoproteins with potent antiangiogenic activity. We have previously shown that the antiangiogenic activity of TSP-1 is mediated by the interaction of the type I repeats (TSR) with the receptor CD36, although other domains of TSP-1 have also been implicated. We now show that the antiangiogenic activity of TSP-2, which contains three TSRs but, unlike TSP-1, lacks the capacity to activate TGF-beta, is similarly dependent on CD36. Using the corneal pocket assay we found that TSP-2 did not inhibit bFGF-induced angiogenesis in CD36 null mice. We then demonstrated that (125)[I]-TSP-2 bound to murine macrophages and that binding was diminished by 70% by anti-CD36 antibody or by using cells from CD36 null animals. Solid-phase binding studies revealed that (125)[I]-TSP-2 bound to CD36/glutathione-S-transferase (GST) fusion proteins encoding the region spanning amino acids 93-120, but not amino acids 298-439. This 93-120 amino acid region, previously identified as the TSP-1 binding site, is homologous to domains on other TSP binding proteins, such as LIMP-2 and histidine-rich glycoprotein (HRGP). Finally, we showed with an immunoabsorbent binding assay that TSP-2 bound HRGP with high affinity and that HRGP blocked the antiangiogenic activity of TSP-2, acting like a "decoy" receptor. These data suggest that modulation of the TSR/CD36 system may play an important role in the regulation of the angiogenic "switch," and may provide a target for therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号