首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R factor Rms 151 is an fi+ R factor and belongs to a incompatibility group FII. It carries the genes governing resistance to various aminoglycoside antibiotics, i.e., kanamycin (KM), lividomycin (LV), gentamicin C complex (GM), and 3',4'-dideoxykanamycin B (DKB), in addition to those governing to tetracycline (TC), chloramphenicol (CM), sulfanilamide (SA), and ampicillin (APC). Electron microscopy observation disclosed that the Rms151 deoxyribonucleic acid was a circular form with length of 31.2 mum. A probable circular genetic map of Rms151 was proposed by genetic and biochemical studies, the genes being in the order of -tet-tra-amp-aad-sul-aph-cml-, in which aad and aph confer resistance to KM.GM.DKB by adenylytransferase or resistance to KM.LV by phosphotransferase, respectively.  相似文献   

2.
Abstract Of the 173 clinical strains of Vibrio cholerae O139 isolated from India, Bangladesh, and Thailand tested, six strains from India were resistant to tetracycline, ampicillin, chloramphenicol, kanamycin, and gentamicin. These six strains harbored a self-transmissible plasmid that mediated resistance to tetracycline, ampicillin, chloramphenicol, kanamycin, gentamicin, sulfamethoxazole, trimethoprim, and O/129. The multiple drug resistance plasmids were 200 kb in size and belonged to the incompatibility group C. Although a majority of the O139 strains (94.8%) were highly resistant to streptomycin, sulfamethoxazole, trimethoprim, and O/129, the tetracycline-susceptible strains so far tested were plasmid-negative. The data suggest the existence of two distinct multiple antimicrobial agent resistance (MAR) patterns in V. cholerae O139.  相似文献   

3.
It was shown that Pseudomonas aeruginosa hospital strains isolated from patients and environment in the Republican Centre of Burns in Tbilisi contained conjugative R plasmids. The plasmids were marked pM15 and pM19, respectively. The plasmid pM15 determined resistance to carbenicillin, kanamycin and tetracycline and plasmid pM19 determined resistance to carbenicillin, kanamycin, tetracycline, chloramphenicol, gentamicin and streptomycin. Plasmid pM15 had a molecular weight of 45.8 MD and seven sites for EcoRI, six sites for HindIII and five sites for Hpa-I-restrictase. This plasmid, as others, belongs to the Inc-P1 incompatibility group.  相似文献   

4.
The levels and spectra of drug resistance were determined in 530 strains of P. aeruginosa isolated in hospitals of three cities of the USSR within 1979-1984. Their conjugative R plasmids were searched for and distribution of various type resistance determinants in the composition of these plasmids was investigated. The results were compared with the findings of analogous studies on clinical strains of P. aeruginosa isolated within 1976-1979. It was shown that there were a rise in the relative number of the strains resistant to kanamycin and a decrease in the occurrence of the P. aeruginosa strains resistant to streptomycin, tetracycline and sulfanilamides. The frequency of the kanamycin, carbenicillin and gentamicin resistance genes in the composition of the detected conjugative R plasmids increased. Hybridization of 32P-labeled probes containing various type antibiotic resistance determinants with strains of P. aeruginosa ML (PAO) containing conjugative R plasmids was indicative of wide spread of genes determining APH(3')II and APH(3") and determinants of classes A and C in the composition of the studied plasmids.  相似文献   

5.
The aim of the study was to evaluate the aminoglycoside resistance of Gram-negative bacilli isolated from patients. To the examination 35 strains of Enterobacteriaceae and 18 of non-fermentative bacteria were included. Resistance to aminoglycosides (gentamicin (G), netilmicin (Nt), tobramycin (T), amikacin (A), kanamycin (K), neomycin (N)) was established by disk diffusion method. Interpretation of enzymatic mechanisms was performed by Livermore. The most common enzymes AAC(6')I were found in Enterobacteriaceae group (mostly in E. cloaceae and P. mirabilis) and AAC(3') and in non-fermentative bacteria: AAC(6')I in P. aeruginosa and APH(3')VI and AAC(3')I in A. baumanii. The most frequent phenotype was resistance to six antibiotics (G, Nt, T, A, K, N) Resistance rates were high for gentamicin (>70 %) in both groups and amikacin (88,89 %) in non-fermentatives.  相似文献   

6.
Amikacin resistance was studied in 380 bacterial strains of Enterobacter, Klebsiella, Serratia, Pseudomonas and E. coli isolated in clinics of the Moscow Region. It was shown that 69 isolates were resistant to amikacin. Plasmid DNA was detected in 10 amikacin resistant isolates. Three of them belonging to Klebsiella and 3 belonging to E. coli contained plasmids controlling resistance to amikacin. The plasmids isolated from the strains of Klebsiella determined as well resistance to kanamycin and streptomycin but did not control resistance to sisomicin, tobramycin and gentamicin while the plasmids isolated from the strains of E. coli determined resistance to amikacin, kanamycin, gentamicin, tobramycin and sisomicin.  相似文献   

7.
The cryptic plasmid pRUT41 from Zymomonas mobilis was examined for its biological properties. This plasmid was found to be conjugally transferred from Z. mobilis CP4 to Escherichia coli BM21 and to carry genes for antibiotic resistance (gentamicin, kanamycin, and streptomycin). Covalently closed circular plasmid DNA was isolated from eight transconjugants of E. coli BM21. These plasmids were identical in mobility on agarose gels and exhibited the same restriction patterns as the native pRUT41 plasmid isolated from Z. mobilis. The plasmid location of the antibiotic resistance genes was further confirmed by transforming E. coli BM21 with isolated pRUT41 plasmid from strain CP4 and with plasmids from the transconjugants of BM21. Resistance to streptomycin, kanamycin, and gentamicin was tightly linked and transferred together in all cases.  相似文献   

8.
The cryptic plasmid pRUT41 from Zymomonas mobilis was examined for its biological properties. This plasmid was found to be conjugally transferred from Z. mobilis CP4 to Escherichia coli BM21 and to carry genes for antibiotic resistance (gentamicin, kanamycin, and streptomycin). Covalently closed circular plasmid DNA was isolated from eight transconjugants of E. coli BM21. These plasmids were identical in mobility on agarose gels and exhibited the same restriction patterns as the native pRUT41 plasmid isolated from Z. mobilis. The plasmid location of the antibiotic resistance genes was further confirmed by transforming E. coli BM21 with isolated pRUT41 plasmid from strain CP4 and with plasmids from the transconjugants of BM21. Resistance to streptomycin, kanamycin, and gentamicin was tightly linked and transferred together in all cases.  相似文献   

9.
Observation of the resistance of Salmonella johannesburg to the six drugs ampicillin (A), streptomycin (S), tetracycline (T), chloramphenicol (C), kanamycin(K) and sulphadiazine (Su) was made over the 7 years from 1973 to 1979. Strains with ASTCKSu- and ASCKSu- resistance patterns predominated in the years 1973-1975 and 1976-1979, respectively. These resistances were found to be mediated by autotransferring plasmids belonging to the incompatibility group FIme. The ASTCKSu-resistance plasmids were unstable, giving rise to deletion variants at a much higher frequency than ASCKSu-resistance plasmids either of natural origin or derived in vitro from the ASTCKSu-resistance plasmids. Thus, the ASCKSu-resistance plasmid might be a deletion variant of the ASTCKSu-resistance plasmid. This is supported by the extensive similarity of their cleavage patterns produced by specific restriction endonucleases.  相似文献   

10.
The drug resistances and plasmid contents of a total of 85 vancomycin-resistant enterococcus (VRE) strains that had been isolated in Korea were examined. Fifty-four of the strains originated from samples of chicken feces, and 31 were isolated from hospital patients in Korea. Enterococcus faecalis KV1 and KV2, which had been isolated from a patient and a sample of chicken feces, respectively, were found to carry the plasmids pSL1 and pSL2, respectively. The plasmids transferred resistances to vancomycin, gentamicin, kanamycin, streptomycin, and erythromycin to E. faecalis strains at a high frequency of about 10(-3) per donor cell during 4 hours of broth mating. E. faecalis strains containing each of the pSL plasmids formed clumps after 2 hours of incubation in broth containing E. faecalis FA2-2 culture filtrate (i.e., the E. faecalis sex pheromone), and the plasmid subsequently transferred to the recipient strain in a 10-min short mating in broth, indicating that the plasmids are responsive to E. faecalis pheromones. The pSL plasmids did not respond to any of synthetic pheromones for the previously characterized plasmids. The pheromone specific for pSL plasmids has been designated cSL1. Southern hybridization analysis showed that specific FspI fragments from each of the pSL plasmids hybridized with the aggregation substance gene (asa1) of the pheromone-responsive plasmid pAD1, indicating that the plasmids had a gene homologous to asa1. The restriction maps of the plasmids were identical, and the size of the plasmids was estimated to be 128.1 kb. The plasmids carried five drug resistance determinants for vanA, ermB, aph(3'), aph(6'), and aac(6')/aph(2'), which encode resistance to vancomycin, erythromycin, kanamycin, streptomycin, and gentamicin/kanamycin, respectively. Nucleotide sequence analyses of the drug resistance determinants and their flanking regions are described in this report. The results described provide evidence for the exchange of genetic information between human and animal (chicken) VRE reservoirs and suggest the potential for horizontal transmission of multiple drug resistance, including vancomycin resistance, between farm animals and humans via a pheromone-responsive conjugative plasmid.  相似文献   

11.
Following the employment of trimethoprim/sulfonamid and gentamicin in the general clinical praxis transferable plasmids with respective resistance function were identified at first in enteric bacteria from sewage before they could be detected in patient strains. Whereas the trimethoprim resistance plasmids represent different incompatibility groups (C, FII, I5, K, M, N, S, U) the gentamicin resistance plasmids are very similar IncM members of 62 MD in size. Therefore a clonal distribution of a particular gentamicin resistance plasmid has to be taken into consideration.  相似文献   

12.
Isolates of Staphylococcus aureus obtained from a Brazilian university hospital were characterized in relation to resistance to gentamicin and related aminoglycosides. Thirty-six isolates were susceptible to methicillin (MSSA) and 14 were resistant (MRSA). All isolates were sensitive to nucleic acid-binding compounds. All MRSA isolates and one MSSA isolate were demonstrated to be resistant to gentamicin and were coincidentally resistant to amikacin, kanamycin, neomycin and tobramycin. Among the gentamicin sensitive MSSA isolates, five isolates were found to be resistant only to kanamycin/neomycin. The resistance to gentamicin (and related aminoglycosides: kanamycin and tobramycin) must be due to AAC(6')-APH(2") activity. As these isolates also showed resistance to neomycin, they must carry an additional genetic element, probably the one responsible for APH(3')III activity, which accounts for the high level of resistance to kanamycin and to amikacin. The resistance to kanamycin/neomycin in the gentamicin sensitive isolates could not be attributed to the AAD(4')(4") activity because of the tobramycin sensitivity, and so could be ascribed to the APH(3')III activity. Curing and transfer experiments, as well as electrophoresis procedures, indicate that gentamicin resistance in Staph. aureus strains here studied has, characteristically, chromosomal localization.  相似文献   

13.
Apramycin-modifying strains isolated from pigs with coli bacteriosis, from humans and hospital environment were studied comparatively. Production of enzymes modifying the aminoglycoside was estimated with the radioactive cofactor procedure. E. coli isolates from the animals were phenotypically resistant to apramycin and a number of other aminoglycosides. They produced acetyltransferase AAC(3)IV, phosphotransferase APH(3')(5"), APH(3") and other enzymes. Resistance of the strains to gentamicin was also conditioned by AAC(3)IV since these strains did not produce AAD(2") and AAC(6'). In the resistant strains of E. coli and their transconjugates there were detected plasmids with a relative molecular weight of 60-80 MD. Some of the belonged to the compatibility group I1, the others belonged to the compatibility group H1. Strains of S. marcescens, K. pneumoniae. K. oxytoca and S. aureus isolated from humans and hospital environment were sensitive to apramycin. Only isolates of P. aeruginosa were resistant to this antibiotic. However, all the isolates produced AAC(3)IV. Some of them additionally produced AAC(6'), an enzyme modifying amikacin, kanamycin and other antibiotics and not acetylating apramycin. Almost all the strains produced kanamycin- and streptomycin phosphotransferases. Possible coselection of strains resistant to apramycin and gentamicin using one of these aminoglycosides is discussed.  相似文献   

14.
Chloramphenicol resistance in salmonella obtained from clinical sources in Ontario was previously found to be often mediated by R plasmids of the H2 incompatibility group. In the present study 40 salmonella strains resistant to one or more of kanamycin, streptomycin, sulfonamides, or tetracycline but sensitive to chloramphenicol, were investigated to determine if they contained R plasmids. Self-transmissible plasmids were isolated from 17 of the strains, and 7 of those showed the bacteriophage inhibition and thermosensitive mechanism of transfer characteristic of H2 plasmids. Entry exclusion and incompatibility experiments confiremd their classification. The results demonstrate that in this population of salmonella, R plasmids of the H2 group are prevalent. Experiments with plasmid-specific phages indicate that the plasmids of this sample, which are not in the H2 group, do not belong to any of the F, I, N, P, or W incompatibility groups.  相似文献   

15.
We have examined the relationship between Inc 7-M plasmids conferring resistance to gentamicin by synthesis of an acetylating enzyme (AAC(3)) and other plasmids of the same incompatibility group by agarose gel electrophoresis following digestion with restriction endonucleases and by nucleic acid hybridization. Although isolated from different bacterial hosts over a 6-year period of time the three plasmids mediating acetylation of gentamicin are very similar. They are related to, but distinct from the other Inc 7-M plasmids. The in vivo evolution of these plasmids appeared modular, involving sequential deletions and stepwise acquisition of transposons (Tn6, Tn7, and a Tn9-like element). These results are in favor of a plasmid epidemic and indicate a great stability of the transfer factor part of these plasmids under natural conditions.  相似文献   

16.
The conjugative R plasmids were detected from fish-pathogenic Edwardsiella tarda isolated from cultured eels. These R plasmids were resistant to sulfonamide and tetracycline, or sulfonamide, streptomycin, chloramphenicol, tetracycline and kanamycin. There were no inhibitions in growth of phages W-31, P1, T1, T3, T7, and lambda. They were classified into incompatibility group A.  相似文献   

17.
Tn1525, a kanamycin R determinant flanked by two direct copies of IS15   总被引:6,自引:0,他引:6  
We have isolated plasmid pIP112 (IncI1) from Salmonella panama and characterized by restriction endonucleases analysis and by recombinant DNA techniques a transposable element designated Tn1525. This 4.44 kilobase (kb) transposon confers resistance to kanamycin by synthesis of an aminoglycoside phosphotransferase (3') (5") type I and contains two copies of IS15 (1.5 kb) in direct orientation. The modular organisation of Tn1525 offers the possibility for intramolecular homologous recombination between the two terminal direct repeats and thus accounts for the in vivo structural lability of plasmid pIP112: instability of kanamycin resistance and tandem amplification of the kanamycin determinant. Other transposons mediating resistance to kanamycin by the same enzymatic mechanism were analysed by agarose and polyacrylamide gel electrophoresis, following digestion with restriction endonucleases, and by Southern hybridizations. These comparisons indicate that, although the structural genes for the phosphotransferases are homologous, Tn1525 differs from Tn903 and Tn2350 and is closely related but distinct from Tn6. Using the same techniques Tn1525 was detected on plasmids belonging to different incompatibility groups and originating from various species of Gram-negative clinical isolates. These results indicate that Tn1525 is representative of a new family of class I composite transposons already spread in diverse pathogenic bacterial genera.  相似文献   

18.
The investigation was focused on 60 strains of Gr- microorganisms isolated from urocultures and resistant to gentamicin and/or amikacin. Resistance evaluation by the method of Bauer--Kirby with respect to 7 aminoglycoside aminocyclitols (streptomycin, spectinomycin, kanamycin, gentamicin, tobramycin, sisomicin, netilmicin and amikacin) as well as determination of minimal inhibitory concentrations revealed that the most frequently occurring resistance phenotype was streptomycin kanamycin gentamicin sisomicin tobramycin (91.66% tested microorganisms). Approximately 50% of all tested organisms were found to be susceptible to netilmicin. Assays for aminoglycoside-modifying enzymes using 32P ATP and 14C ATP confirmed APH(3')(5")--I and AAD(2") as resistance determinants regarding 4,6-substituted deoxystreptamines. Acetyltransferase determination by the method of Shannon and Phillips and that by van de Klundert et al. most frequently assumes for the formation of AAC(3)-II and AAC(3)-I. Assays utilizing radioactive labels in amikacin-resistant strains determine the enzymes APH(3') and AAD(2")-II.  相似文献   

19.
Incompatibility relationships between naturally occurring staphylococcal plasmids conferring erythromycin or kanamycin resistance have been studied making use of recombinants between these plasmids and pSA0301, a temperature-sensitive mutant plasmid determining tetracycline resistance. The four plasmids encoding kanamycin resistance fall in two incompatibility groups; similarly, the three plasmids responsible for erythromycin resistance belong to two other incompatibility groups. This brings the number of distinct incompatibility groups reported for Staphylococcus aureus plasmids to 13.  相似文献   

20.
The properties and origin of multiple resistant strains of Enterobacteriaceae found in the intestine and nasopharynx of infants admitted to the hospital for premature infants were studied. The strains of E. coli of different serovars isolated at various periods contained similar conjugative R plasmids with a molecular weight of 80 Md belonging to the O incompatibility group controlling resistance to kanamycin and physically independent small plasmids controlling resistance to ampicillin (7 Md) and streptomycin-sulfanilamides (4 Md). Multiple drug resistance in the strains of K. pneumoniae was controlled by single large (100-120 Md) plasmid cointegrates with 6-8 resistance markers. Such cointegrates consisted of several potentially independent plasmids, sometimes dividing on transformation of plasmid DNA of the recipient strains of E. coli K12. The small plasmids controlling resistance to ampicillin and streptomycin-sulfanilamides similar to the respective plasmids of E. coli were the constant components of the plasmids cointegrates. The multiple drug resistance in the above strains was combined with high capacity for colonization in premature infants. The medical staff and mothers were the sources of bacterial strains with single plasmids controlling definite types of resistance. It is suggested that the multiple resistant strains of Enterobacteriaceae are formed in hospital as a result of accumulation of the plasmids or plasmid markers and selection. One of the conditions for successive acquisition of new plasmid markers by definite bacterial strains was their high capacity for colonization in patients, which provided constant contacts and genetic exchange of such strains with a wide range of immigrant strains during colonization in the newly admitted patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号