首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of ancient DNA techniques in human studies has been hampered by problems of contamination with modern human DNA. The main problem has been that the object of study belongs to the same species as the observer, and the complete elimination of the contamination risk is seemingly unlikely. Contamination has even been detected in the most specialized laboratories in this field. In these kinds of studies it is therefore very important to detect contamination and to distinguish contaminants from authentic results. Here, we report the use of a strategy to authenticate the identity of ancient mitochondrial DNA (mtDNA), based on the previously established relationship between D-loop sequence substitutions and haplogroup-specific restriction site changes. Forty-four individuals from a 16th-century necropolis were analyzed, from which 28 control region sequences were obtained. These sequences were preclassified into haplogroups, according to the observed motifs. Subsequently, the DNA extracts from which the sequences were obtained, along with independent extracts of subsets of the same individuals, were subjected to restriction fragment length polymorphism (RFLP) analysis to compare and corroborate the results. Using this approach, 24 sequences were authenticated, while two were discarded because of result mismatches. The final distribution of the haplogroups in the sample, and the differences in the sequences, are two additional criteria of authentication.  相似文献   

2.
Hughes AL 《Heredity》2012,108(4):347-353
Recent evidence suggests the frequent occurrence of a simple non-Darwinian (but non-Lamarckian) model for the evolution of adaptive phenotypic traits, here entitled the plasticity-relaxation-mutation (PRM) mechanism. This mechanism involves ancestral phenotypic plasticity followed by specialization in one alternative environment and thus the permanent expression of one alternative phenotype. Once this specialization occurs, purifying selection on the molecular basis of other phenotypes is relaxed. Finally, mutations that permanently eliminate the pathways leading to alternative phenotypes can be fixed by genetic drift. Although the generality of the PRM mechanism is at present unknown, I discuss evidence for its widespread occurrence, including the prevalence of exaptations in evolution, evidence that phenotypic plasticity has preceded adaptation in a number of taxa and evidence that adaptive traits have resulted from loss of alternative developmental pathways. The PRM mechanism can easily explain cases of explosive adaptive radiation, as well as recently reported cases of apparent adaptive evolution over ecological time.  相似文献   

3.
This article provides evidence that selection has been a significant force during the evolution of the human mitochondrial genome. Both gene-by-gene and whole-genome approaches were used here to assess selection in the 560 mitochondrial DNA (mtDNA) coding-region sequences that were used previously for reduced-median-network analysis. The results of the present analyses were complex, in that the action of selection was not indicated by all tests, but this is not surprising, in view of the characteristics and limitations of the different analytical methods. Despite these limitations, there is evidence for both gene-specific and lineage-specific variation in selection. Whole-genome sliding-window approaches indicated a lack of selection in large-scale segments of the coding region. In other tests, we analyzed the ratio of nonsynonymous-to-synonymous substitutions in the 13 protein-encoding mtDNA genes. The most straightforward interpretation of those results is that negative selection has acted on the mtDNA during evolution. Single-gene analyses indicated significant departures from neutrality in the CO1, ND4, and ND6 genes, although the data also suggested the possible operation of positive selection on the AT6 gene. Finally, our results and those of other investigators do not support a simple model in which climatic adaptation has been a major force during human mtDNA evolution.  相似文献   

4.
5.
Origin and differentiation of human mitochondrial DNA.   总被引:7,自引:3,他引:7       下载免费PDF全文
A recent study of mitochondrial DNA (mtDNA) polymorphism has generated much debate about modern human origins by proposing the existence of an "African Eve" living 200,000 years ago somewhere in Africa. In an attempt to synthesize information concerning human mtDNA genetic polymorphism, all available data on mtDNA RFLP have been gathered. A phylogeny of the mtDNA types found in 10 populations reveals that all types could have issued from a single common ancestral type. The distribution of shared types between continental groups indicates that caucasoid populations could be the closest to an ancestral population from which all other continental groups would have diverged. A partial phylogeny of the types found in five other populations also demonstrates that the myth of an African Eden was based on an incorrect "genealogical tree" of mtDNA types. Two measures of molecular diversity have been computed on all samples on the basis of mtDNA type frequencies, on one hand, and on the basis of the number of polymorphic sites in the samples, on the other. A large discrepancy is found between the two measures except in African populations; this suggests the existence of some differential selective mechanisms. The lapse of time necessary for creating the observed molecular diversity from an ancestral monomorphic population has been calculated and is found generally greater in Oriental and caucasoid populations. Implications concerning human mtDNA evolution are discussed.  相似文献   

6.
Mutational hot spots in the mitochondrial microcosm.   总被引:5,自引:2,他引:3  
  相似文献   

7.
A specific segment of mitochondrial DNA from 18 people was examined by two methods of direct DNA sequencing. This segment includes a small noncoding region (V) shown before by restriction analysis to exhibit length polymorphism. All 11 of the human mtDNAs previously reported to have a deletion in this region proved to lack one of the two adjacent copies of a 9-base-pair sequence normally present in human mtDNAs. Phylogenetic analysis suggests that this deletion occurred only once during the evolution of modern types of human mtDNA and that it will be a valuable anthropological marker for peoples of East Asian origin. The one human mtDNA reported to have an addition in region V differs from the wild type by two mutations in the first copy of the 9-base-pair sequence: one transition and an addition of four cytosines, thereby producing a run of 11 cytosines. One of the direct DNA sequencing methods uses a single oligonucleotide primer to facilitate dideoxy sequencing from purified mtDNA templates. The second, more successful, method first amplifies this mtDNA segment enzymatically with two flanking primers (the "polymerase chain reaction") and then uses a third primer for DNA sequencing. This latter method, which works on the DNA extracted from small amounts of blood as well as on purified mtDNA, is shown to be a rapid means of defining sequence variants without purifying and cloning the same DNA segment from many individuals.  相似文献   

8.
Chronic inflammation is known to lead to an increased risk for the development of cancer. Under inflammatory condition, cellular DNA is damaged by hypobromous acid, which is generated by myeloperoxidase and eosinophil peroxidase. The reactive brominating species induced brominated DNA adducts such as 8-bromo-2′-deoxyguanosine (8-Br-dG), 8-bromo-2′-deoxyadenosine (8-Br-dA), and 5-bromo-2′-deoxycytidine (5-Br-dC). These DNA lesions may be implicated in carcinogenesis. In this study, we analyzed the miscoding properties of the brominated DNA adducts generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotides containing a single 8-Br-dG, 8-Br-dA, or 5-Br-dC were used as a template in primer extension reactions catalyzed by human pols α, κ, and η. When 8-Br-dG-modified template was used, pol α primarily incorporated dCMP, the correct base, opposite the lesion, along with a small amount of one-base deletion (4.8%). Pol κ also promoted one-base deletion (14.2%), accompanied by misincorporation of dGMP (9.5%), dAMP (8.0%), and dTMP (6.1%) opposite the lesion. Pol η, on the other hand, readily bypassed the 8-Br-dG lesion in an error-free manner. As for 8-Br-dA and 5-Br-dC, all the pols bypassed the lesions and no miscoding events were observed. These results indicate that only 8-Br-dG, and not 5-Br-dC and 8-Br-dA, is a mutagenic lesion; the miscoding frequency and specificity vary depending on the DNA pol used. Thus, hypobromous acid-induced 8-Br-dG adduct may increase mutagenic potential at the site of inflammation.  相似文献   

9.
To date, a large data set on the mitochondrial DNA (mtDNA) sequence variation in human populations has been accumulated. The use of direct sequencing of the main noncoding region of mtDNA along with the RFLP analysis provide performance of complex analysis of mtDNA polymorphism in human populations. This approach proved to be effective for obtaining molecular genetic portraits of the world populations, as well as for the elucidation of the human evolutionary history and past migrations.  相似文献   

10.
11.
To have a clearer picture of how mitochondrial damages are associated to aging, a comprehensive study of phenotypic and genotypic alterations was carried out, analyzing with histochemical and molecular biology techniques the same skeletal muscle specimens of a large number of healthy subjects from 13 to 92 years old. Histochemical data showed that ragged red fibers (RRF) appear at about 40 years of age and are mostly cytochrome c oxidase (COX)-positive, whereas they are almost all COX-negative thereafter. Molecular analyses showed that the 4977 bp deletion of mitochondrial DNA (mtDNA(4977)) and the 7436 bp deletion of mtDNA (mtDNA(7436)) are already present in individuals younger than 40 years of age, but their occurrence does not change with age. After 40 years of age the number of mtDNA deleted species, as revealed by Long Extension PCR (LX-PCR), increases, the 10422 bp deletion of mtDNA (mtDNA(10422)) appears, although with a very low frequency of occurrence, and mtDNA content is more than doubled. Furthermore, mtDNA(4977) level directly correlates with that of COX-negative fibers in the same analyzed subjects. These data clearly show that, after 40 years of age, the phenotypic and genotypic mitochondrial alterations here studied appear in human skeletal muscle and that they are closely related.  相似文献   

12.
HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.  相似文献   

13.
Strong purifying selection in transmission of mammalian mitochondrial DNA   总被引:5,自引:3,他引:2  
There is an intense debate concerning whether selection or demographics has been most important in shaping the sequence variation observed in modern human mitochondrial DNA (mtDNA). Purifying selection is thought to be important in shaping mtDNA sequence evolution, but the strength of this selection has been debated, mainly due to the threshold effect of pathogenic mtDNA mutations and an observed excess of new mtDNA mutations in human population data. We experimentally addressed this issue by studying the maternal transmission of random mtDNA mutations in mtDNA mutator mice expressing a proofreading-deficient mitochondrial DNA polymerase. We report a rapid and strong elimination of nonsynonymous changes in protein-coding genes; the hallmark of purifying selection. There are striking similarities between the mutational patterns in our experimental mouse system and human mtDNA polymorphisms. These data show strong purifying selection against mutations within mtDNA protein-coding genes. To our knowledge, our study presents the first direct experimental observations of the fate of random mtDNA mutations in the mammalian germ line and demonstrates the importance of purifying selection in shaping mitochondrial sequence diversity.  相似文献   

14.
15.
16.
Deleterious mitochondrial DNA mutations accumulate in aging human tissues.   总被引:9,自引:0,他引:9  
This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA4977) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be 'catastrophic'; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.  相似文献   

17.
18.
19.
Multiple mitochondrial DNA deletions in an elderly human individual.   总被引:15,自引:0,他引:15  
We have used the polymerase chain reaction (PCR) to study deletions in the mitochondrial DNA (mtDNA) of an elderly human individual. An extended set of PCR primers has been utilised to identify 10 mitochondrial DNA deletions in a 69-year-old female subject with no known mitochondrial disease. The particular deletions visualised as PCR products depended on the primer pairs used, such that the more distantly separated PCR primers enabled visualisation of larger deletions. Some deletions were common to the heart, brain and skeletal muscle, whereas others were apparently specific to individual tissues. DNA sequencing analysis of PCR products showed that short direct repeat sequences (5 to 13 bp) flanked all deletion breakpoints; in most cases one copy of the repeat was deleted. It is proposed that the accumulation of such multiple deletions is a general phenomenon during the ageing process.  相似文献   

20.
Using PCR technique, restriction mapping and DNA sequencing, we analyzed liver mitochondrial DNA (mtDNA) of 2 stillborn babies and 62 Chinese subjects with non-liver disease from 27 to 86 years old. The results showed an age-dependent 6,063 bp deletion in the liver mtDNA of older subjects. We found a TAACAGAC sequence flanking the 5'-end breakpoint at 7,842 nucleotide position and an imperfect repeat sequence CAACATAC flanking the 3'-end breakpoint at 13,905 nucleotide position. The incidence of the deleted mtDNA was found to increase with age. The deleted mtDNA was not detected in the liver of the stillbirth or blood cells of all the subjects. This is the first account that an age-related 6,063 bp deletion occurs in the liver mtDNA of old humans. The occurrence of this and previously reported 4,977 bp deletions is consistent with our recent finding that liver mitochondrial respiratory functions decline with age and support the hypothesis that continuous accumulation of mtDNA mutations is an important contributor to ageing process in the human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号