首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

2.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

3.
Membranes purified from castor bean endosperm glyoxysomes by washing with sodium carbonate exhibited integral NADH:ferricyanide and NADH:cytochrome c reductase activities. The enzyme activities could not be attributed to contamination by other endomembranes. Purified endoplasmic reticulum membranes also contained the redox activities; and marker enzyme analysis indicated minimum cross contamination between glyoxysomal and endoplasmic reticulum fractions. The glyoxysomal redox activities were optimally solubilized at detergent to protein ratios (weight to weight) of 10 (Triton X-100), 50 (3-[3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate), and 100 (octylglucoside). Detergent in excess of the solubilization optimum was stimulatory to NADH:ferricyanide reductase and inhibitory to NADH:cytochrome c reductase. Endoplasmic reticulum redox activity solubilization profiles were similar to those obtained for glyoxysomal enzymes using Triton X-100. Purification of the glyoxysomal and endoplasmic reticulum NADH:ferricyanide reductases was accomplished using dye-ligand affinity chromatography on Cibacron blue 3GA agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of NADH:ferricyanide reductase preparations purified by rate-zonal density gradient centrifugation, affinity chromatography, and nondenaturing electrophoresis of detergent-solubilized glyoxysomal and endoplasmic reticulum membranes consistently displayed 32- and 33-kDa silver-stained polypeptide bands, respectively.  相似文献   

4.
The hydrogenase from Paracoccus denitrificans, which is an intrinsic membrane protein, has been solubilised from membranes by Triton X-100. The partial specific volume of the solubilised protein has been determined using sucrose density gradient centrifugation in H2O and 2H2O. The values of the specific volumes of hydrogenase, measured in the presence or absence of Triton X-100, are 0.73 and 0.74 ml . g-1, respectively, indicating that hydrogenase binds much less than one micelle of Triton X-100. The sedimentation coefficient of hydrogenase is increased from 10.4 S to 15.9 S on removal of detergent. The Stokes' radius of hydrogenase, determined by gel filtration on Sepharose 6B, is 5.5 nm in the presence of Triton X-100 compared to 6.7 nm in the absence of detergent. The apparent molecular weight therefore increases from 242,500 to 466,000 on removal of detergent. In the presence of urea and sodium dodecylsulphate, the hydrogenase has an apparent molecular weight of 63,000. The enzyme therefore behaves as a non-covalently linked tetramer in the presence of Triton X-100. Removal of Triton X-100 results in association of tetramers to form octamers.  相似文献   

5.
N C Robinson  L Talbert 《Biochemistry》1986,25(9):2328-2335
Purified beef heart cytochrome c oxidase, when solubilized with at least 5 mg of Triton X-100/mg of protein, was found to be a monodisperse complex containing 180 molecules of bound Triton X-100 with a protein molecular weight of 200 000, a Stokes radius of 66-72 A, and an s(0)20,w = 8.70 S. These values were determined by measurement of the protein molecular weight by sedimentation equilibrium in the presence of D2O, evaluation of the sedimentation coefficient, S(0)20,w, by sedimentation velocity with correction for its dependence upon the concentration of protein and detergent, and measurement of the effective radius by calibrated Sephacryl S-300 gel chromatography. The monomeric complex was judged to be homogeneous and monodisperse since the effective mass of the complex was independent of the protein concentration throughout the sedimentation equilibrium cell and a single protein schlieren peak was observed during sedimentation velocity. These results are interpreted in terms of a fully active monomeric complex that exhibits typical biphasic cytochrome c kinetics and contains 2 heme a groups and stoichiometric amounts of the 12 subunits normally associated with cytochrome c oxidase. With lower concentrations of Triton X-100, cytochrome c oxidase dimers and higher aggregates can be present together with the monomeric complex. Monomers and dimers can be separated by sedimentation velocity but cannot be separated by Sephacryl S-300 gel filtration, probably because the size of the Triton X-100 solubilized dimer is not more than 20% larger than the Triton X-100 solubilized monomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hydrodynamic, crosslinking and immunoprecipitation studies were performed on detergent solubilized cytochrome b to demonstrate that the two copurifying polypeptides of molecular weight 91,000 (glycosylated) and 22,000 [1,2] formed a molecular complex. The hydrodynamic studies indicated that the cytochrome b/detergent complex had a sedimentation coefficient, partial specific volume and Stokes radius of 5.25 S, 0.82 cm3/g and 6.2 nm in Triton X-100 and 6.05 S, 0.80 cm3/g and 5.6 nm in octylglucoside, respectively. These studies also indicated that the detergent-protein complex has a molecular mass of 202 and 188 kDa in Triton X-100 and octylglucoside, respectively, is asymmetric in shape with a frictional coefficient of 1.3-1.4 and binds significant amounts of detergent. The molecular mass of the protein portion of the detergent-cytochrome complex was estimated to be between 100 and 127 kDa. Crosslinking studies with disuccinimidyl suberate and alkaline cleavable bis[2-(succinimidooxy-carbonyloxy)ethyl]sulfone revealed that the Mr = 91,000 and Mr = 22,000 components of purified cytochrome b are closely associated and can be covalently bound to form a polypeptide which, by SDS-polyacrylamide gel electrophoresis, has Mr values of 110,000-120,000 and 120,000-135,000 on 8% and 11% (w/v) SDS-polyacrylamide gels, respectively. Cleavage of the crosslinked species resulted in the reappearance of the Mr = 91,000 and Mr = 22,000 species. Sedimentation profiles of crosslinked cytochrome b in linear sucrose density gradients made up in H2O were identical to those of non-crosslinked controls. A close association of the two protein species was further confirmed by the ability of antibody specific for the smaller subunit to immunoprecipitate the larger one also. Experiments aimed at identifying the heme-carrying subunit(s) were inconclusive, since dissociation of the complex resulted in loss of cytochrome b spectrum. These results, in combination with our SDS-polyacrylamide gel electrophoresis molecular-weight estimates, provide strong evidence for the cytochrome b being an alpha-beta-type heterodimer composed of a glycosylated Mr = 91,000 and non-glycosylated Mr = 22,000 polypeptide.  相似文献   

7.
The membrane-bound acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) from adult rat brain has been purified to homogeneity using sequential affinity chromatography on Con A-Sepharose and on dimethyl-aminoethylbenzoic acid-Sepharose 4B followed by DEAE-cellulose chromatography. The yield of the purified enzyme (specific activity: 3068 U/mg protein) is higher than 50%. Polyacrylamide gel electrophoresis in the presence of Triton X-100 gives only one band with acetylcholinesterase activity. With the exception of electrofocusing and pore gradient electrophoresis, where a multiple band pattern was detected (which seems to be artefactual), the enzyme appears to be homogenous. Gel filtration and sucrose density gradient centrifugation in the presence of Triton X-100 give only one symmetrical peak, with a calculated molecular weight of 328 000. Since polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) and mercaptoethanol gives only one band with a molecular weight of 74 500, a tetrametric structure can be postulated for the membrane-bound acetylcholinesterase from rat brain.  相似文献   

8.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

9.
D-Fructose dehydrogenase was solubilized and purified from the membrane fraction of glycerol-grown Gluconobacter industrius IFO 3260 by a procedure involving solubilization of the enzyme with Triton X-100 and subsequent fractionation on diethylaminoethyl-cellulose and hydroxylapatite columns. The purified enzyme was tightly bound to a c-type cytochrome and another peptide existing as a dehydrogenase-cytochrome complex. The purified enzyme was deemed pure by analytical ultracentrifugation as well as by gel filtration on a Sephadex G-200 column. The molecular weight of the enzyme complex was determined to be about 140,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of three components having molecular weights of 67,000 (dehydrogenase), 50,800 (cytochrome c), and 19,700 (unknown function). Only D-fructose was readily oxidized by the enzyme in the presence of dyes such as ferricyanide, 2,6-dichlorophenolindophenol, or phenazine methosulfate. Nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and oxygen did not function as electron acceptors. The optimum pH of D-fructose oxidation was 4.0. The enzyme was stable at pH 4.5 to 6.0 Stability of the purified enzyme was much enhanced by the presence of detergent in the enzyme solution. Removal of detergent from the enzyme solution facilitated the aggregation of the enzyme and caused its inactivation. An apparent Michaelis constant for D-fructose was observed to be 10(-2) M with the purified enzyme. D-Fructose dehydrogenase was shown to be a satisfactory reagent for microdetermination of D-fructose.  相似文献   

10.
The enzyme, alkyldihydroxyacetone-P synthase, has been solubilized and partially purified from microsomal preparations of Ehrlich ascites cells after treatment with Triton X-100 and phospholipase C, followed by chromatography on Sepharose 4B. When the Triton X-100 was removed after solubilization the enzyme was still active but eluted in the void volume of the Sepharose 4B column, whereas in the presence of detergent it eluted much later as a single peak of activity, indicating that the solubilized enzyme tends to aggregate unless detergent is present. The lower molecular weight form of alkyldihydroxyacetone-P synthase (in detergent) had an estimated molecular mass of 250,000–300,000 daltons.  相似文献   

11.
Phosphatidylinositol (PtdIns)-glycan-specific phospholipase D was purified from bovine and human serum by phase separation in Triton X-114 and by chromatography on DEAE-cellulose, octyl-Sepharose, concanavalin-A-Sepharose, and hydroxyapatite. The purification of the two enzymes was approximately 1200-fold with a recovery of 3-5%. Bovine serum contained about 40 micrograms/ml of PtdIns-glycan-specific phospholipase D, about 10 times more than the amount determined in human serum. PtdIns-glycan-specific phospholipase D is also present in mammalian cerebrospinal fluid and in mammalian milk but to a much lesser extent than in serum. Enzyme from bovine and human serum displayed amphiphilic properties as revealed by sucrose density gradient centrifugation and gel filtration in the absence and presence of detergent. On density gradient centrifugation, both enzymes sedimented with an apparent sedimentation coefficient of about 6.0 S in the presence of 0.1% Triton X-100, and formed aggregates up to 14.5 S in the absence of detergent. Upon gel filtration, the bovine and human enzymes migrated with a Stokes' radius of 6.5 nm and 6.6 nm, respectively, in the presence of Triton X-100. In the absence of Triton X-100, both enzymes gave a Stokes' radius of 8.8 nm. Serial centrifugation of serum at increasing NaBr concentrations revealed that the majority of the enzyme is contained in the high-density lipoprotein fraction. PtdIns-glycan-specific phospholipase D from bovine and human serum contained 27 and 28 N-acetylglucosamine residues, respectively. Treatment with N-glycosidase F decreased the apparent molecular mass of the bovine and human enzyme from 115 and 123 kDa to 91 and 87 kDa, respectively. Sequence analysis of peptides derived from PtdIns-glycan-specific phospholipase D of bovine serum by CNBr cleavage gave 100% identity to the sequence published for the bovine liver enzyme while there was 83% similarity and 74% identity to the sequence of peptides obtained from the human serum enzyme.  相似文献   

12.
Acid Sphingomyelinase of Human Brain: Purification to Homogeneity   总被引:2,自引:2,他引:0  
Abstract: Acid sphingomyelinase (sphingomyelin phosphodiesterase, EC 3.1.4.12) was purified from human brain by extraction with 0.1% Triton X-100, followed by sequential chromatography on Concanavalin A-Sepharose, octyl-Sepharose, hydroxylapatite, DEAE-cellulose, red A-agarose, Sephadex G-200, and DEAE-cellulose with ampholyte elution. Sphingomyelinase activity was purified more than 20,000-fold from the starting homogenate with a 1% yield. Specific activity of up to 800 μmol/h/mg protein could be achieved. Gel electrophoresis with 6% polyacrylamide containing sodium dodecyl sulfate gave a single protein band with a molecular weight of 70,000, in good agreement with the molecular weight previously estimated from sucrose density gradient centrifugation in 0.1% Triton X-100. Triton X-100 could be readily removed from the enzyme by sucrose density gradient centrifugation. The Triton-free enzyme showed the same K m and pH optimum. Heat stability of the enzyme was reversibly affected by Triton X-100, in that removal of the detergent made the enzyme more heat labile. The K m of purified enzyme for sphingomyelin was 36 μ M . It was unaffected by sulfhydryl reagents, but was inhibited by dithiothreitol at high concentrations. The preparation was free of all lysosomal hydrolase activities tested, including galactosylceramidase and α-mannosidase, which tended to copurify in our previous procedure. The enzyme was inactive toward sphingosylphosphorylcholine. It was active with bis[ p -nitrophenyll- and bis[4-methylumbelliferyl]phosphate and the chromogenic and fluorogenic sphingomyelin analogues.  相似文献   

13.
Envelope membranes were isolated from potato tuber amyloplastby a discontinuous sucrose density gradient and high speed centrifugation.These membranes catalyzed the transfer of [14C]glucose fromUDP-[14C]glucose to endogenous sterol acceptors and, in turn,catalyzed the esterification of steryl glucosides with fattyacids from an endogenous acyl donor. The synthesis of sterylglucosides was stimulated in the presence of Triton. X-100,while formation of acyl steryl glucosides was inhibited by thedetergent. However, in the presence of an added sterol acceptorand Triton X-100, the inhibition of acyl steryl glucoside synthesiswas overcome by the addition of phosphatidylethanolamine. Theenzyme involved in steryl glucoside formation was solubilizedby treatment of the envelope membranes with 0.3% Triton X-100.The solubilized enzyme had an almost absolute requirement forsterol acceptors. Key words: Solanum tuberosum, Sterol glucosylation, Steryl glucoside acylation, Amyloplast membrane  相似文献   

14.
Electrophoretic patterns of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) from rat erythrocyte were studied. The enzyme was solubilized by the following treatments: a) Triton X-100, b) sodium deoxycholate, or c) ultrasonic irradiation. When the erythrocyte membrane was solubilized by Triton X-100 at concentrations higher than 0.3%, by 10 mM sodium deoxycholate, or by ultrasonic irradiation for more than 5 min, a single band of acetylcholinesterase activity appeared in the gel. Two bands of activity were stained in the gel when the membrane was solubilized by Triton X-100 at concentrations between 0.1--0.2%, or by ultrasound for 5 min. Electrophoretic patterns of acetylcholinesterase from rats fed a fat-sufficient diet were similar to those for the enzyme from animals fed a fat-free diet. The recombination of lipids with the enzyme eluted from the gels confirmed the "phenotypic allosteric desensitization phenomenon".  相似文献   

15.
S Leterme  M Boutry 《Plant physiology》1993,102(2):435-443
NADH:ubiquinone reductase (EC 1.6.19.3), or complex I, was isolated from broad bean (Vicia faba L.) mitochondria. Osmotic shock and sequential treatment with 0.2% (v/v) Triton X-100 and 0.5% (w/v) [3-cholamidopropyl)dimethylammonio]-1-propanesulfate (CHAPS) removed all other NADH dehydrogenase activities. Complex I was solubilized in the presence of 4% Triton X-100 and then purified by sucrose-gradient centrifugation in the presence of the same detergent. The second purification step was hydroxylapatite chromatography. Substitution of CHAPS for Triton X-100 helped remove contaminants such as ATPase. The high molecular mass complex is composed of at least 26 subunits with molecular masses ranging from 6000 to 75,000 kD. The purified complex I reduced ferricyanide and ubiquinone analogs but not cytochrome c. NADPH could not substitute for NADH as an electron donor. The KM for NADH was 20 microM at the optimum pH of 8.0. The NH2-terminal sequence of several subunits was determined, revealing the ambiguous nature of the 42-kD subunit.  相似文献   

16.
D-alanine dehydrogenase, an inducible, membrane associated enzyme of Pseudomonas aeruginosa was solubilized from envelope preparations by treatment with Triton X-100 and purified 31-fold in the presence of 0.05% Triton X-100 to 60% homogeneity. Gel electrophoresis indicated the presence of a single subunit of approximately 49,000 molecular weight. The enzyme contained FAD, and absorption spectra were typical of an iron-sulfur flavoprotein. Solubilization produced significant changes in some properties of the enzyme: solubilized enzyme showed increased affinity for D-alanine; a broader substrate specificity; and increased temperature sensitivity, compared with the membrane associated form.  相似文献   

17.
The membrane-bound acetylcholinesterase (AchE) from human peripheral blood lymphocyte gives only one symmetrical peak on sucrose density gradient centrifugation in the presence of Triton X-100 detergent, with the calculated sedimentation coefficient of 6.5 S. However, this dimeric form of AchE was converted to a monomeric 3.8 S form when treated with 2-mercaptoethanol and iodoacetic acid. The results are consistent with studies which have shown by sodium dodecyl sulfate gel electrophoresis that the enzyme is built up of two identical monomers inter-linked by disulfide bond(s). Under reducing conditions, revealed a single species of 70,000 molecular weight, whereas under non-reducing conditions, another species of 140,000 molecular weight of the AchE was found. Polyacrylamide gel electrophoresis indicated a single band with AchE activity in the presence of Triton X-100. In contrast, in the absence of the same detergent multiple band pattern could be observed. These results suggest that membrane-bound AchE enzyme is present in homogenous dimeric form on human lymphocyte membrane.  相似文献   

18.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

19.
The gonadotropin receptors associated with plasma membrane fractions were solubilized by detergents, including Triton X-100, Lubrol WX, Lubrol PX and sodium deoxycholate before and after equilibration with 125I-labelled human chorionic gonadotropin. The binding activity remained in solution even after centrifugation at 300 000 X g for 3 h. The solubilized gonadotropin receptor or gonadotropin receptor complex was characterized by gel filtration and sucrose density gradient centrifugation. Sucrose density gradient centrifugation of solubilized gonadotropin-receptor complex in the presence of Triton X-100 had a sedimentation coefficient of 6.5 S whereas the solubilized uncomplexed receptor had a sedimentation coefficient of 5.1 S. In the absence of the detergent, solubilized hormone receptor complex from plasma membrane fractions I and II sedimented with an apparent sedimentation coefficient of 6.6 S and 7.4 S, respectively. Similarly, the free receptor also showed higher sedimentation profile with an apparent sedimentation coefficient of 6.7 S for fraction I and 7.2 S for fraction II. Treatment of plasma membranes with phospholipase A and C inhibited the binding of 125I-labelled human chorionic gonadotropin in a dose dependent manner, whereas phospholipase D was without any effect. Doses of 1.4 mI. U. of phospholipase A or 0.6 mI.U. of phospholipase C were required to produce 50% inhibition of the binding activity. These phospholipases had no effect on the preformed 125I-labelled human chorionic gonadotropin-receptor complex nor on the sedimentation profile of solubilized gonadotropin receptor complex.  相似文献   

20.
In the caudate nucleus of the species tested about 20% of the acetylcholinesterase was salt soluble and sedimented in sucrose density gradient centrifugation as monomeric 5 S and tetrameric 10 S enzyme. About 80% was solubilized by micellar concentrations of Triton X-100 and sedimented as a tetrameric 10 S species in the presence of detergent but formed aggregates in the absence thereof. All the enzyme displayed poor cross-reactivity with a precipitating assay (Ouchterlony) but in a solid phase non-precipitating assay the cross-reactivity could be quantified and ranged from 96 to less than 1% depending on the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号