首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
本实验用离体大鼠心脏Langendorff灌流模型,观察缺血及缺血——再灌注对大鼠心肌肌浆网[SR]钙转运功能的影响。结果表明:缺血25min引起SR钙摄取初速率下降,摄取量降低;缺血40min,使其进一步加重。缺血25min后再灌注15min,SR的钙转运功能进一步降低,与缺血40min后果类似;同时SR上的Ca~(2 )-ATPase活性也显著降低。用不同pH的灌流液进行再灌注,对SR钙转运功能的障碍无显著影响。这提示:心肌缺血可引起SR的钙转运功能障碍,并随缺血时间的延长而加重;再灌注加重缺血造成的SR功能的损伤。偏酸或偏碱的K-H液再灌注均不能改善SR钙转运功能的抑制,表明pH变化不是缺血-再灌注时引起SR功能障碍的重要因素。  相似文献   

2.
研究低氧、复氧对乳鼠心肌细胞内钙离子浓度的影响,以及牛磺酸在模拟心肌缺血/再灌注(I/R)过程中对细胞内钙的调节作用。采用SD大鼠乳鼠进行心肌细胞培养,建立模拟I/R模型。以Fluo-4/AM荧光指示剂负载,应用激光共聚焦显微镜技术(confocal laser scanning microscope,CLSM)检测心肌细胞钙离子浓度的变化。对照组心肌细胞内钙离子荧光强度(23.71±2.37U)较低;低氧180 min后复氧即刻,钙离子荧光强度开始增加(57.52±8.31U),复氧180 min后钙离子荧光强度(71.13±4.74U)显著增高(P<0.01vs对照组)。而牛磺酸组细胞内钙离子荧光强度较模拟I/R组显著降低[(42.42±4.17U)vs(71.13±4.74U),P<0.01]。心肌细胞缺血/缺氧导致Ca2+超载;模拟I/R Ca2+超载加剧,而牛磺酸有明显减轻心肌细胞模拟I/R时Ca2+超载的作用。  相似文献   

3.
Impaired glucose metabolism is implicated in cardiac failure during ischemia-reperfusion. This study examined cardiac glucose uptake and expression of glucose transport-4 (GLUT-4) in dogs undergoing ischemia-reperfusion. Cardiac ischemia was induced by cardiopulmonary bypass for 30 min or 120 min in dogs. Plasma insulin and glucose concentrations were measured at pre-bypass (control), and aortic cross-clamp off (ischemia-reperfusion) at 15, 45, and 75 min. At the same time, the left ventricle biopsies were taken for GLUT-4 immunohistochemistry and glycogen content analysis. In dogs receiving 120-min ischemia, coronary arterial and venous glucose concentrations were increased, but the net glucose uptake in ischemia-reperfusion heart were significantly decreased from 25% (control) to zero at 15 and 45 min of reperfusion, and recovered to only 7% after 75 min reperfusion. Myocardium glycogen contents were decreased by 65%. Plasma insulin levels and Insulin Resistant Index were markedly increased in dogs undergoing 120-min ischemia and reperfusion. These changes were relatively mild and reversible in dogs receiving only 30-min ischemia followed by reperfusion. Expression of total GLUT-4 in myocardium was decreased 40% and translocation of GLUT-4 from cytoplasm to surface membrane was decreased 90% in dogs receiving 120-min ischemia followed by 15-min reperfusion. Suppressed translocation of GLUT-4 was also evident in dogs receiving 30-min ischemia, but to a lesser extent. Reduced myocardium glucose uptake, utilization, and glycogen content are clearly associated with ischemia-reperfusion heart injury. This appears to be due, at least in part, to suppressed expression and translocation of myocardium GLUT-4.  相似文献   

4.
We caused unilateral lung ischemia-reperfusion injury in awake sheep by simultaneously occluding the left pulmonary artery and left main stem bronchus for 12 h. The occluded left lung was inflated with nitrogen. Reperfusion resulted in an elevation of lung lymph flow from 1.3 to 5.0 ml/15 min and an increase in lymph-to-plsma protein concentration ratios. Reperfusion, but not ischemia alone, caused an increase in wet-to-dry weight ratios in both the reperfused left lung and the contralateral right lung. Granulocytes increased in both lungs during the ischemic period and after reperfusion, and hypoxemia developed after reperfusion. The calcium channel antagonist, verapamil, given just before reperfusion, caused a marked attenuation in the reperfusion-induced changes in the lung lymph variables and wet-to-dry weight ratio. However, verapamil did not affect the hypoxemia or granulocyte sequestration seen after reperfusion. We conclude that reperfusion of ischemic sheep lung results in increased microvascular permeability that can be partially prevented by verapamil.  相似文献   

5.
Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities.  相似文献   

6.
Effect of low flow ischemia-reperfusion injury on liver function   总被引:2,自引:0,他引:2  
Bailey SM  Reinke LA 《Life sciences》2000,66(11):1033-1044
The release of liver enzymes is typically used to assess tissue damage following ischemia-reperfusion. The present study was designed to determine the impact of ischemia-reperfusion on liver function and compare these findings with enzyme release. Isolated, perfused rat livers were subjected to low flow ischemia followed by reperfusion. Alterations in liver function were determined by comparing rates of oxygen consumption, gluconeogenesis, ureagenesis, and ketogenesis before and after ischemia. Lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) activities in effluent perfusate were used as markers of parenchymal and endothelial cell injury, respectively. Trypan blue staining was used to localize necrosis. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) were measured in the perfusate as indicators of intracellular oxidative stress. LDH activity was increased 2-fold during reperfusion compared to livers kept normoxic for the same time period whereas PNP activity was elevated 5-fold under comparable conditions. Rates of oxygen consumption, gluconeogenesis, and ureagenesis were unchanged after ischemia, but ketogenesis was decreased 40% following 90 min ischemia. During reperfusion, the efflux rates of total glutathione and GSSG were unchanged from pre-ischemic values. Significant midzonal staining of hepatocyte nuclei was observed following ischemia-reperfusion, whereas normoxic livers had only scattered staining of individual cells. Reperfusion of ischemic liver caused release of hepatic enzymes and midzonal cell death, however, several major liver functions were unaffected under these experimental conditions. These data indicate that there were negligible changes in liver function in this model of ischemia and reperfusion despite substantial enzyme release from the liver and midzonal cell death.  相似文献   

7.
To understand the subcellular basis of contractile failure due to ischemia-reperfusion injury, effects of 20, 60, and 90 min of global ischemia followed by 30 min of reperfusion were examined in isolated guinea pig hearts. Cardiac ultrastructure and function as well as Ca2+ transport abilities of both mitochondrial and microsomal fractions were determined in control, ischemic, and reperfused hearts. Hearts were unable to generate any contractile force after 20 min of ischemia and showed a 75% recovery upon reperfusion. However, there were no significant changes in the subcellular Ca2+ transport in the 20-min ischemic or reperfused hearts. When hearts were made ischemic for 60 and 90 min, the recovery of contractile force on reperfusion was 50 and 7%, respectively. There was a progressive decrease in mitochondrial and microsomal Ca2+ binding and uptake activities after 60 and 90 min of ischemia; these changes were evident at various times of incubation period and at different concentrations of Ca2+. Mitochondrial Ca2+ transport changes were only partially reversible upon reperfusion after 60 and 90 min of ischemia, whereas the microsomal Ca2+ binding, uptake and Ca2+ ATPase activities deteriorated further upon reperfusion of the 90-min ischemic hearts. Ultrastructural changes increased with the duration of the ischemic insult and reperfusion injury was extensive in the 90-min ischemic hearts. These data show that the lack of recovery of contractile function upon reperfusion after a prolonged ischemic insult was accompanied by defects in sarcoplasmic reticulum Ca2+ transporting properties and structural damage.  相似文献   

8.
Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca(2+)]i), which is thought to play a critical role in ischemia-reperfusion injury. Ischemic preconditioning (PC) improves myocardial function during ischemia-reperfusion, a process that may involve opening mitochondrial ATP-sensitive potassium (K(ATP)) channels. Because pharmacological limitation of mitochondrial calcium concentration ([Ca(2+)]m) overload during ischemia-reperfusion has been shown to improve myocardial function, we hypothesized that PC would reduce [Ca(2+)]m during ischemia-reperfusion and that this effect was mediated by opening mitochondrial K(ATP) channels. Isolated rat hearts were subjected to 25 min of global ischemia and 30 min of reperfusion with or without PC in the presence of mitochondrial K(ATP) channel opening (diazoxide, 100 microM) and blockade [5-hydroxydecanoic acid (5-HD), 100 microM]. Contracture during ischemia (end-diastolic pressure) and functional recovery on reperfusion (developed pressure) were assessed. Total [Ca(2+)]i and [Ca(2+)]m were measured using indo 1 fluorescence. Both PC and diazoxide limited the increase in end-diastolic pressure and resulted in greater functional recovery after 30 min of reperfusion, functional effects that were partially or completely abolished by 5-HD. PC and diazoxide also significantly limited the increase in [Ca(2+)]m during ischemia-reperfusion. In addition, PC lowered [Ca(2+)]i during reperfusion, whereas diazoxide paradoxically resulted in increased [Ca(2+)]i during reperfusion. There was an inverse linear relationship between [Ca(2+)]m and developed pressure during reperfusion. PC limits the ischemia-induced increase in mitochondrial, but not total, [Ca(2+)]i, an effect mediated by opening mitochondrial K(ATP) channels. These data suggest that the lowering of mitochondrial calcium overload is a mechanism of cardioprotection in PC.  相似文献   

9.
Although ischemia-reperfusion(I/R) has been shown to depress cardiac performance and sarcoplasmicreticulum (SR) function, the mechanisms underlying these alterationsare poorly understood. Because lack of oxygen and substrate deprivationare known to occur during the ischemic phase, we examined theeffects of reperfusion on cardiac performance and SR function in heartssubjected to hypoxia and substrate lack. For this purpose, isolated rathearts were perfused with hypoxic and/or glucose-free medium for 30 min and then reperfused with normal medium for 1 h; the SR vesicles were isolated for studying the Ca2+-transport activities.Reperfusion with normal medium of hearts deprived of oxygen or glucoseshowed no changes in cardiac performance and SR function. However,reperfusion of hearts perfused with hypoxic glucose-free medium showed~45% decrease in cardiac contractile activities as well as 23 and64% reduction in SR Ca2+-uptake andCa2+-release activities, respectively, without any changein the level of SR Ca2+-cycling proteins. Depressed SRfunction in these hearts was associated with a reduction inCa2+/calmodulin-dependent protein kinase (CaMK)phosphorylation of the SR Ca2+-cycling proteins and 34%decrease in SR CaMK activity. These changes in cardiac performance, SRfunction, and SR CaMK activity in the hypoxic, glucose-deprived,reperfused hearts were similar to those observed in hearts subjected to30 min of global ischemia and 60 min of reperfusion. Theresults therefore suggest that the lack of both oxygen and substrateduring the ischemic phase may contribute to the I/R-inducedalterations in cardiac performance and SR function. Furthermore, theseabnormalities were associated with reduced SR CaMK activity.

  相似文献   

10.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号