首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aphidius ervi and Aphidius eadyi, two parasitoids of the pea aphid Acyrthosiphon pisum, were attracted to components of the aphid sex pheromone in laboratory bioassays. Pre-test experience with host aphids in the presence of aphid sex pheromone did not affect the response of A. ervi to pheromone in a 4-way olfactometer, compared with that of naive parasitoids. Aphidius ervi females exposed only to the pheromone prior to testing did not respond in the olfactometer, suggesting habituation to the foraging cue by the parasitoid. In a wind tunnel, aphid sex pheromone increased the attraction of A. ervi to the plant-host complex (Vicia faba/A. pisum), suggesting an additive effect when two different foraging cues are present simultaneously.  相似文献   

2.
ABSTRACT. A Y-tube olfactometer was used to test the reactions of the hymenopteran cereal aphid parasitoids Aphidius uzbekistanicus Luzhetski and A. ervi Haliday to odours from aphids and their host plants. Only females responded to aphids but both sexes responded to plant odours. A. uzbekistanicus responded to the cereal aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walker) whilst A. ervi , which has a broad host range, responded to M. dirhodum and the pea aphid, Acyrthosiphon pisum. Female A. uzbekistanicus responded to wheat leaves only but males responded to a range of plant material. Both male and female A. ervi responded to wheat and bean leaves. The failure of A. ervi to respond to either nettle aphids, Microlophium carnosum (Bukt.), or nettle leaves, despite its frequent parasitization of this aphid in the field, suggests the existence of more than one race of the parasitoid and casts doubts on the usefulness of alternative hosts as reservoirs for A. ervi in integrated control programmes. Males of both species responded to their respective females suggesting the presence of a sex specific attractant.  相似文献   

3.
Abstract.  1. The parasitoid Aphidius ervi and the entomopathogenic fungus Pandora neoaphidis both require successful invasion of an aphid host to complete their life cycle. A shorter developmental period allows P. neoaphidis to out-compete A. ervi. Aphidius ervi may reduce this fitness cost by avoiding aphid colonies containing P. neoaphidis . Here the response of A. ervi towards P. neoaphidis was assessed using sequential experiments designed to replicate different stages of parasitoid foraging behaviour.
2. Entry rate experiments showed that A. ervi entered aphid colonies containing P. neoaphidis -sporulating cadavers and that there was no significant difference in the attraction of A. ervi to aphid-damaged Vicia faba plants containing either healthy Acyrthosiphon pisum or P. neoaphidis -sporulating cadavers.
3. Observational behavioural experiments indicated that the presence of P. neoaphidis did not affect the search time or total foraging time of A. ervi on V. faba plants infested with either healthy A. pisum or P. neoaphidis -sporulating cadavers.
4. In Petri dish bioassays using aphids infected with P. neoaphidis over a period of 120 h, A. ervi showed no difference in attack rate against uninfected aphids or living aphids infected with P. neoaphidis for 1, 24, 48, 72, or 96 h. However, sporulating cadavers (120 h infection) were not attacked.
5.  Aphidius ervi appears only able to detect the presence of P. neoaphidis once the host is dead and sporulation has started. The fitness of A. ervi may therefore be severely reduced when foraging in P. neoaphidis -infected aphid colonies.  相似文献   

4.
  • 1 Aphids are the major group of insects that vector plant viruses, and they often display a preference for foliage showing disease symptoms. Although this behaviour will increase the numbers of vectors acquiring the pathogen, it will not in itself result in a greater spread of the disease.
  • 2 The present study examined how infection of Vicia faba by the nonpersistently transmitted virus bean yellow mosaic virus (BYMV) affected colonization by pea aphids Acyrthosiphon pisum. We then examined how foraging by the hymenopterous parasitoid Aphidius ervi affected aphid settling/movement behaviour and the consequences for dissemination of the virus.
  • 3 In Petri dish arenas, aphids colonized discs from BYMV‐infected leaves more rapidly than discs from uninfected plants. Reflectance from infected foliage was approximately 20% higher than from uninfected leaves in the green–yellow wavelengths, indicating that aphids might be responding to visual cues from the brighter foliage. Settling was reduced by A. ervi, with the foraging wasps preventing the aphids reaching and/or remaining on the leaf tissue.
  • 4 In multiple plant arenas, A. ervi caused a reduction in aphid numbers but also a nine‐fold increase in BYMV infection. It is hypothesized that disturbance by the parasitoids resulted in more aphid movement as well as more cases of aphids probing on a BYMV‐infected plant and then a new host within the critical time period for successful inoculation to occur. This effect of parasitoids on virus dispersal should be considered in epidemiological models of insect‐vectored plant diseases, and also when evaluating the use of natural enemies in biocontrol strategies of insect herbivore/vector pests.
  相似文献   

5.
We compared the settling preferences and reproductive potential of an oligophagous herbivore, the pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), in response to pea plants, Pisum sativum L. cv. ‘Aragorn’ (Fabaceae), infected with two persistently transmitted viruses, Pea enation mosaic virus (PEMV) and Bean leaf roll virus (BLRV), that differ in their distribution within an infected plant. Aphids preferentially oriented toward and settled on plants infected with PEMV or BLRV in comparison with sham‐inoculated plants (plants exposed to herbivory by uninfected aphids), but aphids did not discriminate between plants infected with the two viruses. Analysis of plant volatiles indicated that plants inoculated with either virus had significantly higher green leaf volatile‐to‐monoterpene ratios. Time until reproductive maturity was marginally influenced by plant infection status, with a trend toward earlier nymph production on infected plants. There were consistent age‐specific effects of plant infection status on aphid fecundity: reproduction was significantly enhanced for aphids on BLRV‐infected plants across most time intervals, though mean aphid fecundity did not differ between sham and PEMV‐infected plants. There was no clear pattern of age‐specific survivorship; however, mean aphid lifespan was reduced on plants infected with PEMV. Our results are consistent with predictions of the host manipulation hypothesis, extended to include plant viruses: non‐viruliferous A. pisum preferentially orient to virus‐infected host plants, potentially facilitating pathogen transmission. These studies extend the scope of the host manipulation hypothesis by demonstrating that divergent fitness effects on vectors arise relative to the mode of virus transmission.  相似文献   

6.
Among alfalfa pests in Iran three aphid species, green alfalfa aphid Acyrthosiphon pisum Harris spotted alfalfa aphid Therioaphis trifolii forma maculata Buckton and blue alfalfa aphid, Acyrthosiphon kondoi Shinji are important pests. The green alfalfa aphid can be observed all along the growing season particularly from late May to mid June at Karaj climate conditions. During this period, the mean monthly maximum temperature and relative humidity were about 28 degrees C and 60-65% respectively. This aphid overwinters as nymph and viviparous female. Sexual forms and eggs could not be seen under field conditions. Spotted alfalfa aphid, Therioaphis trifolii fonna maculata is the most prevalent aphid in summer time, when the mean monthly maximum temperature and relative humidity are about 33-34 degrees C and 44-58% respectively. Sexual individuals have been observed in the laboratory but not in the field. Among predators (Coccinella septempunctata, Adonia variegata, Syrphus cinctus, S. corolae, S. grassulariae, Chrysoperla carnea and Nabis capsiformis) one coccinellid species, C. septempunctata, had greatest impact on fluctuations of population. Among hymenopterous parasitoids two species have been collected from alfalfa field they were Aphidius ervi and Praon palitans. These parasitoids destroyed a good percent of aphids and statistically proved to lower aphid populations significantly.  相似文献   

7.
Aphid clonal resistance to a parasitoid fails under heat stress   总被引:1,自引:0,他引:1  
Parasitoid virulence and host resistance are complex interactions depending on metabolic rate and cellular activity, which in aphids additionally implicate heritable secondary symbionts among the Enterobacteriaceae. As performance of the parasitoid, the aphid host and its symbionts may differentially respond to temperature, the success or failure of aphid parasitism is difficult to predict when temperature varies. We tested the hypothesis that resistance of the pea aphid Acyrthosiphon pisum to the parasitoid Aphidius ervi, which is linked to aphid secondary symbionts, may depend on temperature in several resistant and non-resistant aphid clonal lineages of different geographic origin and of known bacterial symbiosis, using experiments in controlled environments. Complete immunity to A. ervi at 20 degrees C in three different aphid clones whose symbiosis is characterized by the possession of Hamiltonella defensa reversed to high susceptibility at 25 degrees C and especially 30 degrees C, suggesting that the aphid's immune responses to the establishment and early development of the parasitoid is strongly reduced at moderately high temperatures. There was no evidence that a pea aphid control genotype that was susceptible to A. ervi at 20 degrees C could become more resistant as temperature increases, as has been suggested for insect fungal pathogens. By contrast, our results suggest that aphid clonal resistance to A. ervi and related parasitoids is characteristic of cool temperature conditions, similar to various other fitness attributes of aphids. Based on evidence that H. defensa symbionts characterized all three A. ervi resistant pea aphid clones studied, but was absent in control aphids that remained susceptible at all temperatures, we suggest that secondary symbiosis plays a key role in the heat sensitivity of aphid clonal resistance. Our study may also indicate that aphid natural control of variably susceptible host populations by aphid parasitoids is more likely at moderate to high temperatures.  相似文献   

8.
The aphid parasitoid Aphidius ervi was released in the major lucerne-growing areas of New South Wales (NSW), Australia, between 1978 and 1981. With the collaboration of district agronomists of the New South Wales Department of Agriculture, five State-wide surveys were conducted in 1982–1983 to determine the success of the release program. In each survey, the distribution of the parasitoid was checked in relation to populations of the aphids Acyrthosiphon kondoi Shinji and Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). The surveys confirmed the successful dispersal and establishment of A. ervi in the major lucerne-growing areas of NSW. They demonstrated its ability to survive and recover rapidly after a severe and widespread drought.  相似文献   

9.
When a parasitoid is searching for hosts, not all hosts are equally likely to be attacked. This variability in attack probability may affect the parasitoid functional response. Using a collection of experiments, we quantified the functional response of Aphidius ervi (Hymenoptera: Braconidae), an insect parasitoid of the pea aphid Acyrthosiphon pisum (Homoptera: Aphididae). We measured variability in the number of hosts attacked by a foraging parasitoid both among plants and within plants. At the first scale, A. ervi, searching among plants containing different numbers of aphids, showed both aphid-density-dependent and aphid-density-independent variability in the number of aphids attacked per plant. Within plants, A. ervi selectively attacked second and third instar aphids relative to other instars. Furthermore, there was variability in the susceptibility of attack among aphids independent of instar. Variability in attack rates among aphids both among and within plants decreased parasitoid foraging efficiency, with the greatest decrease caused by among-plant variability. Furthermore, the decrease in foraging efficiency was greatest when the average number of aphids per plant was low, thereby transforming a strong Type II functional response into one approaching Type I.  相似文献   

10.
Aphids are attacked by a large guild of natural enemies including many primary parasitoids which mummify their hosts. These mummies are themselves attacked by a guild of mummy parasitoids which are potentially important in regulating primary parasitoids at densities below which they can exert biological control. The response of mummy parasitoids to mummy densities was investigated in an experiment in which mummy densities of the pea aphid (Acyrthosiphon pisum) attacked by the parasitoid Aphidius ervi were manipulated across host plant patches. Overall, the risk of parasitism was density independent, though with very high inter-patch variability which may allow probabilistic refuges from secondary parasitism. Six species of four genera of mummy parasitoids were recorded. Of the responses of the individual genera, Coruna were reared most frequently from patches of high host density while amongst patches from which Syrphophagus was reared parasitism was inversely density dependent.  相似文献   

11.
Abstract 1. Motivated by a community study on aphids and their fungal pathogens, three hypotheses were tested experimentally to investigate the influence of the fungal pathogen, Erynia neoaphidis Remaudière and Hennebert, on aphid population and community ecology.
2. Field experiments were performed in 2 years to test whether two susceptible aphid species on different host plants might interact through the shared fungal pathogen. No strong pathogen-mediated indirect interactions (apparent competition) between populations of pea aphid Acyrthosiphon pisum Harris and nettle aphid Microlophium carnosum Buckton were detected.
3. In the first of the field experiments, pea aphids exposed to the fungus showed a weak tendency to produce more winged dispersal morphs than control populations not exposed to the fungus. In a laboratory test, however, no support was found for the hypothesis that the presence of volatiles from fungus-infected cadavers promotes production of winged offspring.
4. The response of the pea aphid parasitoid Aphidius ervi Halliday to colonies containing hosts infected 1 and 3 days previously was assessed. Wasps initiated fewer attacks on 1-day-old infected colonies than on healthy colonies, with the numbers on 3-day-old fungus-infected colonies intermediate.  相似文献   

12.
Abstract:  In order to establish the host range of the pea aphid subspecies, Acyrthosiphon pisum ssp. destructor , and hence from which plant species pea crops are likely to become infested, the performance of this aphid on different leguminous plants was assessed. The plant species used were: Lotus uliginosus , Medicago sativa , Melilotus officinalis , Ononis repens , Sarothamnus scoparius , Trifolium hybridum , Trifolium pratense , Trifolium repens , Vicia cracca and Vicia faba . Vicia faba and Trifolium hybridum were the plants on which aphids reached the greatest size, took the least time to reach maturity, and experienced the lowest mortality. The time taken for the aphids to develop to maturity was negatively correlated with adult size, whereas survival to maturity was positively correlated with adult size. The host preference of the aphids was also assessed. The plant species selected as hosts by alatae were those on which their offspring performed best.  相似文献   

13.
The effect of experience on the responsiveness of the braconid parasitoidAphidius ervi to host(Acyrthosiphon pisum)-associated cues was investigated on bean plants(Vicia faba) using a wind tunnel bioassay. Oviposition experience on the plant-host complex significantly increased the oriented flight and landing responses ofA. ervi females to an undamaged plant and to a plant-host(A. pisum) complex. However, oviposition experience onA. pisum aphids when isolated from the plant did not change their responses to the intact plant and the complex. Searching on an unwashed plant which had been previously damaged byA. pisum also increased their response to an undamaged plant and a host-damaged plant, whereas the experience of searching on an undamaged plant did not significantly change their responses to undamaged plants. However, when parasitoids were allowed to search on an undamaged plant which had been sprayed withA. pisum honeydew, this significantly increased their response to an undamaged plant. Oviposition experience on the plant-host complex and foraging experience on a host-damaged plant or an undamaged plant sprayed with honeydew also significantly reduced the mean time taken by the parasitoids to respond in the wind tunnel. The behavioral changes associated with such experience were acquired within 30 min and persisted for at least 3 days. The results demonstrate the capacity ofA. ervi to learn associatively olfactory cues from plants, host-damaged plants, and plant-host complexes and confirm the role of aphid honeydew as a host recognition kairomone forA. ervi.  相似文献   

14.
Parasitoid foraging behaviour is known to be influenced by interactions of genetic, physiological, environmental and experiential factors. Although the role of genetics, learning and conditioning in determining responses to foraging cues has been studied in lepidopteran parasitoids, aphid parasitoids have been less intensively researched. Using the tritrophic system,Vicia faba — Acyrthosiphon pisum — Aphidius ervi, evidence for the role of genetics and learning in parasitoid foraging is presented, and the difficulty of differentiating between genetic responses and those conditioned during parasitoid development is discussed. Aphidius ervi responds to aphid sex pheromones both in the field and in the laboratory. Since laboratory reared individuals have never experienced sexual aphids, the response must be genetic as it cannot have been conditioned during development. An example of a response conditioned during development is the variable response ofA. rhopalosiphi to different wheat cultivars depending upon host feeding. Aphid parasitoids also are adept at learning as shown by their responses to plant-derived cues which are learnt as Conditioned Stimuli (CS). Host products such as honeydew, as well as the host itself, can act as the Unconditioned Stimulus (US) in the learning process. Aphidius ervi offers a good model for investigating the role of these factors in parasitoid foraging behaviour. Finally, the value of such research for biological control programmes involving aphid parasitoids is discussed.  相似文献   

15.
  1. Viral insect-borne plant pathogens have devastating impacts in agroecosystems. Vector-borne pathogens are often transmitted by generalist insects that move between non-crop and crop hosts. Insect vectors can have wide diet breadths, but it is often unknown which hosts serve as pathogen reservoirs and which non-crop host harbours the highest density of vectors.
  2. In the Pacific Northwest USA, the pea aphid (Acyrthosiphon pisum) is a key virus vector in pulse crops. Despite pea aphid having a large number of potential non-crop plant hosts occuring in the region, no reservoir has yet been identified for the economically-costly pathogen Pea Enation Mosaic Virus (PEMV).
  3. We addressed these issues by linking field surveys of an aphid vector and plant virus with statistical models to develop risk assessments for common non-crop legumes; in 2018, we completed a 65-site survey where aphids were surveyed in weedy legumes within and outside dry pea fields.
  4. We quantified the abundance of pea aphids on 17 hosts, and plant tissue was tested for PEMV. Relatively high densities of A. pisum were found in habitats dominated by hairy vetch (Vicia villosa), which was the only legume other than cultivated dry pea where PEMV was detected.
  5. Our results indicate that V. villosa is a key alternative host for PEMV, and that pest management practices in this region should consider the distribution and abundance of this weedy host in viral disease mitigation efforts for pulses.
  相似文献   

16.
Bean yellow vein-banding virus (BYVBV) has been found occasionally in mixed infection with pea enation mosaic virus (PEMV) in spring-sown field beans (Vicia faba minor) in southern England. Glasshouse tests confirmed that, like PEMV, BYVBV is transmissible by manual inoculation and by aphids in the persistent manner. However, BYVBV can be transmitted by aphids only from plants that are also infected with a helper virus, usually PEMV. Thus after separation from PEMV by passage through Phaseolus vulgaris it was no longer aphid-transmissible. It became aphid-transmissible again only after re-mixing in plants with PEMV or with a substitute helper, bean leaf roll virus (BLRV). It was not transmitted by aphids that fed sequentially on plants singly infected with PEMV and BYVBV. Thus the interaction between BYVBV and PEMV (or BLRV) that enables BYVBV to be transmitted by aphids seems to occur only in doubly infected plants. However, it was not transmitted by aphids from plants doubly infected with BYVBV and broad bean wilt virus (BBWV). BYVBV and PEMV were transmitted more readily by Acyrthosiphon pisum than by Myzus persicae; neither virus was transmitted by Aphis fabae. Phenol extracts of BYVBV-infected leaves were more infective than phosphate buffer or bentonite-clarified extracts and were sometimes infective when diluted to 1/1000. The infectivity of BYVBV in phosphate buffer extracts of leaves singly infected with BYVBV, unlike that in extracts of leaves doubly infected with BYVBV and PEMV (or BLRV), was destroyed by treatment with organic solvents. BYVBV infected 11 of 28 plant species that were inoculated with phenol extracts; seven of the infected species were legumes. No transmission of BYVBV was detected through seed harvested from infected field bean plants. Isometric particles c. 30 nm in diameter were seen in extracts of plants doubly infected with BYVBV and PEMV but not in extracts of plants infected with BYVBV alone. Leaves of plants infected with BYVBV, alone or with PEMV, contained membrane-bound structures c. 50–90 nm in diameter associated with the tonoplast in cell vacuoles. These structures were not found in healthy leaves. BYVBV has several properties in common with other known aphid-borne viruses that are helper-dependent and transmitted in a persistent manner. Possibly, as suggested for some of them, aphid transmission of BYVBV depends on the coating of its nucleic acid with helper virus coat protein.  相似文献   

17.
Plant penetration behaviour (probing) of the cabbage aphid, Brevicoryne brassicae, and the pea aphid, Acyrthosiphon pisum, was studied on excised leaves of broad beans, Vicia faba, kept in water or in a 1% aqueous solution of sinigrin. Using the DC EPG (Electrical Penetration Graph) technique it was shown that the cabbage aphid on sinigrin-untreated bean leaves showed numerous short probes into epidermis and mesophyll. None of these aphids showed either phloem salivation or ingestion waveforms on untreated leaves. In contrast, on sinigrin-treated bean leaves, 35% of the probing time was spent on phloem sap ingestion (E2) and almost all aphids reached phloem vessels and started feeding. The duration of phloem salivation before phloem ingestion and the mean duration of phloem ingestion periods were similar on a host and a sinigrin-treated non-host plant. However, the total probing time by B. brassicae was 10% longer, the total phloem sap ingestion time was twice as long, and the time to the first phloem phase within a probe was three times shorter on the host plant compared to sinigrin-treated broad beans. Acyrthosiphon pisum also responded to the addition of sinigrin to broad beans, but in this case sinigrin acted as a deterrent. On sinigrin-treated leaves, A. pisum terminated probes before ingestion from phloem vessels, and none of these aphids showed phloem salivation and ingestion on treated leaves. Glucosinolates were detected in the mesophyll cells of the brassicaceous plant, Sinapis alba. Based on this finding and in addition to the foregoing EPG analysis of aphid probing on these plants and broad beans, our hypothesis is that aphids may recognise their host plants as soon as they probe the mesophyll tissue and before they start ingestion from phloem vessels.  相似文献   

18.
Plant virus and parasitoid interactions in a shared insect vector/host   总被引:2,自引:0,他引:2  
Interactions between barley yellow dwarf luteovirus (BYDV) and the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae), were investigated while sharing the vector/host, Sitobion avenae (F.) (Homoptera: Aphididae). Aphids, which were parasitized during their second larval stadium, had access to virus-infected plants before, immediately after, or several days after parasitoid attack. The larval development of A. ervi in S. avenae was significantly delayed when virus acquisition took place before or shortly after the parasitoid had hatched, but not when the parasitoid was at the second larval stage during virus acquisition. Similarly, the presence of BYDV led to a significantly higher aphid mortality when they acquired virus up to and including the time that A. ervi was at the first larval stage. Adult female parasitoids deposited fewer eggs in viruliferous aphids. Virus transmission was not reduced by parasitization, and in some experiments aphids which were subjected to parasitoid attack transmitted BYDV more efficiently than unattacked insects.  相似文献   

19.
Polyacrylamide gel electrophoresis of enzymes (carboxylesterases) was used for the first time to monitor rates of parasitism in airborne alate (winged) grain aphid, Sitobion avenae (F.) population samples collected by suction trapping in Hertfordshire, UK. Using previously described electrophoretic 'keys', the species of hymenopterous parasitoids present in individual aphids were identified and found to be Aphidius ervi (Haliday) and/or Aphidius rhopalosiphi (De Stephani Perez) (Braconidae). Entomophthoralean fungal infection was also detected using this approach. Aphidiid wasp parasitism was detected from early June to mid-August and fungal infection from late June to late July. The results are discussed in relation to parasitoid population structure and dynamics, especially (i) the fact that winged aphids passively transport the early stages of their braconid parasitoids and fungal pathogens, potentially to newly-founded colonies, which may directly impact on the dual aphid-parasitoid populations genetics; and (ii) the approach used to collect and assay parasitised and fungal infected aphids involving both suction trapping and electrophoretic testing may have potential in assessing the level and efficacy of these biological control agents in integrated pest management (IPM) schemes to combat cereal aphid outbreaks.  相似文献   

20.
Wing formation in presumptive alate morphs (virginoparae and males) was observed for the pea aphid, Acyrthosiphon pisum, exposed to attack by the parasitoid, Aphidius ervi, at different stages of host development. Morphological abnormalities in parasitized aphids such as complete apterization (development of a wingless form), formation of rudimentary wing buds, and deformed wings indicate a possible disruption of the endocrine system. Changes in the body shape and the number of olfactory secondary rhinaria on the antennae could indicate an influence of juvenile hormone in parasitized A. pisum but the development of fifth-stadium supernumerary larvae (indicated by an extra moult and which can be induced by exogenous juvenile hormone treatments) was not found in parasitized aphids. In addition, while apterization of virginoparae can also be induced by the pro-allatocidal compound Precocene III, this was not possible in the male. Males which survived parasitoid attack without forming aphid mummies (indicating that oviposition had not occurred) developed as wingless individuals suggesting that the reproductive-tract-fluids from the female parasitoid were important in the wing inhibition process. Teratocytes from the parasitoid appeared to promote developmental arrest in parasitized aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号