首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Localized surface plasmon resonances (LSPRs) of Ag-dielectric-Ag multi-layered nanoshell are studied by quasi-static approximation and plasmon hybridization theory. Absorption properties of multi-layered nanoshell with the silver core and nanoshell separated by a dielectric layer exhibit strong coupling between the core and nanoshell. The result shows absorption spectrum of LSPRS is influenced by the refractive index of surrounding medium, the dielectric constant of middle dielectric layer, the thickness of inner core radius and outer shell layer. LSPR shift of the longest wavelength \(\left |\omega _{-}^{-}\right >\) is red-shifted with increasing the inner core radius. It is interesting to find that longer wavelength \(\left |\omega _{-}^{+}\right >\) mode is mainly effected by the ratio constant of the surrounding medium refractive index ε 4 to the middle layer dielectric constant ε 2. \(\left |\omega _{-}^{+}\right >\) mode takes place a blue-shift with increasing inner core radius when ε 2 > ε 4, a red-shift when ε 2 < ε 4, and no-shifting when ε 2 = ε 4. However, the influence of dielectric layer radius to \(\left |\omega _{-}^{+}\right >\) mode shows the different property as that of increasing the inner core radius. The underlying mechanisms are analyzed with the plasmon hybridization theory and the distribution of induced charge interaction between the inner core and outer shell. In addition, the influence of core radius, middle dielectric layer radius and outer shell radius to sensitivity of Ag-dielectric-Ag multi-layered nanoshell are also reported, a higher sensitivity could be gotten by adjusting geometrical parameters. Our theoretical study could give an easy way to analyze properties of the core-shell nanosphere based on plasmon hybridization theory and the induced charge interaction, and usefully broaden the applications in nano-optics.  相似文献   

2.
Because of the interaction between dipole resonances of the inner gold sphere and the outer gold shell, gold-dielectric-gold multishells with sub-50 nm diameter may at most have three hybridization modes of surface plasmon resonance (SPR). Theoretical calculations based on quasi-static theory indicate that there are blending and splitting of SPR bands in the absorption spectra, which makes the number of absorption peak tunable by changing the radius of inserted gold sphere, thickness of gold shell, dielectric constant of middle dielectric shell or outer environment. The two absorption peaks at longer wavelength, which correspond to the hybridization from the bonding shell plasmon and the sphere plasmon, are usually intense and well tunable. The absorption peak at shorter wavelength, which corresponds to the symmetric coupling between the anti-bonding shell plasmon and the sphere plasmon, is relative weak and only occurs with large dielectric constant of the middle shell, small dielectric constant of the outer surrounding, large inner radius of the gold shell, and small radius of the inner gold sphere. Furthermore, the physical origin of these plasmon hybridizations in gold-dielectric-gold multishells nanostructure has also been illuminated by analyzing the local electric field distributions.  相似文献   

3.
The localized surface plasmon resonances of multilayered nanostructures are studied using finite difference time domain simulations and plasmon hybridization method. Concentric metal–dielectric–metal (MDM) structure with metal core and nanoshell separated by a thin dielectric layer exhibits a strong coupling between the core and nanoshell plasmon resonance modes. The coupled resonance mode wavelengths show dependence on the dielectric layer thickness and composition of core and outer layer metal. The aluminum-based MDM structures show lower plasmon wavelength compared with Ag- and Au-based MDM nanostructures. The calculated refractive index sensitivity (RIS) factor is in the order Ag–Air–Ag>Au–Air–Au>Al–Air–Al for monometallic multilayered nanostructures. Bimetallic multilayered nanostructures support strong and tunable plasmon resonance wavelengths as well as high RIS factor of 510 nm/refractive index unit (RIU) and 470 nm/RIU for Al–Air–Au and Ag-Air-Au, respectively. The MDM structures not only exhibit higher index sensitivity but also cover a wide ultraviolet–near-infrared wavelengths, making these structures very promising for index sensing, biomolecule sensing, and surface-enhanced Raman spectroscopy.  相似文献   

4.
Tunable properties of localized surface plasmon resonances (LSPR) of gold-dielectric multilayered nanoshells are studied by quasi-static theory and plasmon hybridization theory. Multilayered nanoshells with the gold core and nanoshell separated by a spacer layer exhibit strong coupling between the core and nanoshell plasmon resonance modes. It is found that the absorption spectra characteristics of LSPR are sensitive to multiple parameters including the surrounding medium refractive index, the dielectric constant of spacer layer, the radius of inner core gold sphere, outer shell layer thickness, and their coupling strength. The results show that LSPR is mainly influenced by the ratio of spacer layer dielectric constant ε 2 to surrounding medium dielectric constant ε 4. Absorption spectrum of \(\left |\omega _{-}^{+}\right \rangle \) mode is red-shifted with increasing core radius when ε 2 > ε 4. It is surprising to find that LSPR is blue-shifted with increasing core radius when ε 2 < ε 4, and no shift when ε 2 = ε 4. These interesting contrary shifts of \(\left |\omega _{-}^{+}\right \rangle \) mode with different ratios ε 2/ε 4 are well analysed with plasmon hybridization theory and the distributions of induced charges interaction between the inner core and outer shell. In addition, for the sake of clarity, the distributions of electric filed intensity at their plasmon resonance wavelengths are also calculated. This work may provide an alternative approach to analyse property of the core-shell nanoshell particles based on plasmon hybridization theory and the induced charge interaction.  相似文献   

5.
Radiation damping of surface plasmon oscillations in metallic nanoparticles is proportional to their volume. For relatively large particles, this canal dominates the other mechanisms of relaxation and becomes the main limiting factor for spectral sensitivity of nanoparticles. In this communication, we consider metallic nanoshell with the dielectric core and calculate the radiation damping rate of surface plasmon oscillations, depending on the geometry and dielectric constants of the surrounding environment and the core. It is shown that surface plasmon radiation damping in nanoshell is suppressed by several orders of magnitude as compared to the solid particle of the same outer radius. This effect is conditioned by strong redshift of surface plasmon frequencies with the decrease of shell thickness. It is also demonstrated that the radiation damping rate of core–shell particle is highly sensitive with respect to the refractive index of surrounding media.  相似文献   

6.
Localized surface plasmon resonance (LSPR) properties of Au-Ag-Au three-layered nanoshell are investigated theoretically using the quasi-static electricity. Triple-bands LSPRs have been observed in the absorption spectrum. Both the peak wavelength and intensity could be fine tuned by altering the thickness and radius of the separate Ag layer. The properties and physical origin of the LSPR in the Au-Ag-Au three-layered nanoshell is much different from that of Au-dielectric-Au three-layered nanoshell. The corresponding physical mechanism has been illustrated by plotting the local electric field patterns and analyzing the interaction of the surface charges from different metal interfaces. Although the LSPR of Au-Ag-Au three-layered nanoshell is affected by the plasmon hybridization from all metal surfaces, it has been found that the plasmon coupling in different metallic layer takes main effect on the LSPR properties of different absorption peaks. These results indicate that the different type of metallic layers appearing alternately in the multilayered nanoshells could create abundant tunable LSPR modes, which provides potential for multiplex biosensing based on LSPR.  相似文献   

7.
Zhao  Shu-min  Zhu  Jian 《Plasmonics (Norwell, Mass.)》2017,12(4):1153-1159

The tunable second harmonic generation (SHG) enhancement factor of gold-dielectric-gold three-layered nanoshells has been theoretically studied using the theory of quasi-static electrodynamics and plasmon hybridization. Because of the local surface plasmon resonance (LSPR)-induced local field effect, the SHG response corresponding to both fundamental frequency and second harmonic has been greatly enhanced. By changing the geometry parameters and local dielectric environment of the three-layered nanostructure, the intensity and shift of the SHG factor peaks could be fine tuned. As the radius of the inner gold sphere is increased, both the fundamental and the second harmonic SHG peaks from the anti-symmetric coupling between the outer bonding shell plasmon and the inner sphere plasmon decrease, whereas the SHG peaks from the symmetric coupling between the outer shell and the inner sphere get intense. These radius-dependent intensity changes of the SHG peaks also depend on the dielectric constant of the separate layer and outer surrounding. Thus, the number of SHG peak could be tuned from two to four. Furthermore, the wavelength gaps between the SHG peaks corresponding to anti-symmetric and symmetric coupling could be greatly reduced by increasing the thickness of the outer gold shell. Therefore, the nonmonotonous intensity change could be observed because of the switching of the SHG peaks. The corresponding physical origin has been illuminated by analyzing the plasmon hybridization and the polarization fields in the nanostructure.

  相似文献   

8.
We study the excitation and emission enhancement mechanisms for fluorescence from molecules confined within subwavelength metal apertures, or nanocavities. The variation in these enhancements with wavelength is calculated for individual round nanocavities in gold of varying diameters and dielectric environments. Enhancement peaks are associated with localized surface plasmon resonances of the nanocavity. In addition, these enhancements strongly vary with location within the nanocavity. These results should aid future work in maximizing overall fluorescence enhancement from these structures.  相似文献   

9.
Optical transmission properties of multilayered ultra-thin metal gratings are numerically studied. The transmission spectrum has a broad stop-band with extremely low transmittance compared to that of a single-layer one for TM polarization. The stop-band is shown to be formed by multiple-interference tunneling and various plasmon resonance processes in ultra-thin-metal and dielectric multilayers. That is on the transmission background of non-apertured metal/dielectric multilayer structures that have low transmission in the long-wavelength range due to destructive multiple-interference tunneling, the transmission is further suppressed in the stop-band by plasmon resonances in the top metal/dielectric layers, e.g., the anti-symmetric bound surface plasmon mode in the ultra-thin metal layer and the gap surface plasmon mode in the metal-sandwiched dielectric layer. High transmission beyond the stop-band is due to coupled gap surface plasmon mode in the entire multilayer structures. Applications of the optical properties of the multilayered ultra-thin metal gratings are suggested for optical filtering (wavelength or polarization selective).  相似文献   

10.

The surface plasmon resonance (SPR)-induced local field effect in Al-Au-Ag trimetallic three-layered nanoshells has been studied theoretically. Because of having three kinds of metal, three plasmonic bands have been observed in the absorption spectra and the local electric field factor spectra. The local electric field enhancement and the corresponding resonance wavelength for different plasmon coupling modes and spatial positions of the Al-Au-Ag nanoshells with various geometry dimensions are investigated to find the maximum local electric field enhancement. The calculation results indicate that the giant local electric field enhancement could be stimulated by the plasmon coupling in the middle Au shell or the outer Ag shell and could be optimized by increasing the Ag shell thickness and decreasing the Au shell thickness. What is more, the local electric field enhancement also nonmonotonously depends on the dielectric constant of the environment; the local electric field intensity will be weakened when the surrounding dielectric constant is too small or too large.

  相似文献   

11.
J Bramhall 《Biochemistry》1986,25(11):3479-3486
There are distinct differences in the molecular packing of phospholipid molecules in the inner and outer membrane monolayers of small lipid vesicles; a small radius of curvature imparts an asymmetry to the interface between these two monolayers. I have used an amphiphilic fluorescent probe, N-[5-(dimethylamino)naphthalenyl-1-sulfonyl]glycine (dansylglycine), to determine if this asymmetry in molecular packing leads to the existence of different environments for fluorescent probes resident in the membrane. Dansylglycine is highly sensitive to the dielectric constant of its environment, and the fluorescence signal from membrane-bound dye is distinct from that in the aqueous medium. When dansylglycine is first mixed with vesicles, it rapidly partitions into the outer monolayer; the subsequent movement of dye into the inner monolayer is much slower. Because of the time lag between the initial partitioning and the subsequent translocation, it is possible to measure the emission spectrum from membrane-bound dye before and after translocation, thus distinguishing the two potential environments for dansylglycine molecules. In the outer membrane monolayer of small dipalmitoylphosphatidylcholine vesicles, dye fluorescence emission is maximal at 530 nm, corresponding to a dielectric constant of 7 for the medium surrounding the fluorophore. For dye in the inner monolayer, emission is maximal at 519 nm, corresponding to a dielectric constant of 4.7. The results suggest that water molecules are excluded more efficiently from the dye binding sites of the inner membrane monolayer than they are from those of the outer monolayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.

Finite element method (FEM) simulations have been carried out on free-standing and finite dielectric substrate-supported eccentric (i) silica core-gold nanoshell dimers and (ii) gold core-silica nanoshell dimers for understanding their near- and far-field plasmonic properties. In the case of eccentric silica core-gold nanoshell dimers, multiple peaks are observed in the near- and far-field spectra due to the plasmon hybridization. The number of peaks is found to be sensitive to the core offset parameters of the nanoshells forming nanodimer. The wavelength locations of the peaks due to the constructive coupling of the lower order modes found relatively more sensitive to the dielectric substrate. The number of peaks in the near- and far-field spectra found the same presence and absence of the dielectric substrate. The values of full width at half maximum (FWHM) of the peaks observed in the near-field spectra are found larger as compared to those observed in the far-field spectra. In contrast, in the case of eccentric gold core-silica nanoshell dimers, multiple peaks have not been observed. The FWHM of the observed peak is found sensitive to the core offset parameters of the nanoshells, and the number of peaks in the near field- and far-field spectra found not same in the presence and absence of the dielectric substrate. Moreover, the differences in near- and far-field spectra of plasmonically coupled (i) concentric nanoshells, (ii) eccentric nanoshells, and (iii) concentric and eccentric nanoshells also investigated numerically.

  相似文献   

13.

We demonstrate plasmon coupling phenomenon between equivalent (homodimer) and non-equivalent (heterodimer) spherical shape noble metal nanoparticle (Ag, Au and Al). A systematic comparison of surface plasmon resonance (SPR) and extinction properties of various configurations (monomer, homodimer and heterodimer) has been investigated to observe the effect of compositional asymmetry. Numerical simulation has been done by using discrete dipole approximation method to study the optical properties of plasmonically coupled metal nanoparticles (MNPs). Plasmon coupling between similar nanoparticles allows only higher wavelength bonding plasmon mode while both the plasmon modes lower wavelength antibonding mode as well as higher wavelength bonding mode in the case of heterodimer. Au monomer of radius 50 nm shows resonance peak at 518 nm while plasmon coupling between Au-Au homodimer results in a spectral red shift around 609 nm. Au-Ag plasmonic heterodimer (radius 50 nm) reveals two resonant modes corresponding to higher energy antibonding mode (422 nm) as well as lower energy bonding mode (533 nm). Further, we have shown that interparticle edge-to-edge separation is the most significant parameter affecting the surface plasmon resonances of MNPs. As the inter particle separation decreases, resonance wavelength shows red spectral shift which is maximum for the touching condition. It is shown that plasmon coupling is a reliable strategy to tune the SPR.

  相似文献   

14.
Polarization-dependent resonance light scattering (RLS) of biomolecular layer coated gold nanoshell are investigated theoretically by means of the quasistatic approximation. Both the intensity and wavelength of RLS are sensitive to the azimuth angle and can be tuned by altering the core dielectric constant and biomolecular layer thickness. In the direction parallel to the incident polarization, RLS could be enhanced by decreasing the core dielectric constant or increasing the layer thickness whereas, in the direction perpendicular to the incident polarization, the RLS is only sensitive to the core dielectric constant. The variation of RLS corresponding to the changing of biomolecular layer thickness also greatly depends on the polarization. The variation of RLS intensity always reaches its maximum when the azimuth angle is 0 and can be improved by increasing the gold shell thickness or decreasing the core dielectric constant. However, the variation of RLS wavelength always reaches its maximum when the azimuth angle is between 0 and π/2 and can be improved by decreasing the gold shell thickness or core dielectric constant. This optimization of polarization-dependent RLS response of gold nanoshell to the biocoating is potentially useful in biosensing applications.  相似文献   

15.
We studied plasmonic dipole, quadrupole, and sextupole modes of Ag nanoshell (NS) excited by a pair of aligned radial electric dipoles (bi-dipole) in symmetric and antisymmetric configurations by using dyadic Green’s functions. The mutual excitation rate and the radiative and nonradiative powers of bi-dipole in the presence of Ag NS were analyzed. Our results show that these modes are in accordance with the surface plasmon resonances of Ag NS irradiated by a polarized plane wave. In addition, the mutual excitation rate retains local maxima at these modes. Moreover, the quadrupole and octupole modes are only excited in the cases of the symmetric radial bi-dipole, while the dipole and sextupole modes are only excited in the cases of the antisymmetric ones. The dipole mode is broadband, while the other higher-order modes are narrowband. Moreover, all of these plasmonic modes are red-shifted as the ratio of the core radius to the shell thickness increases.  相似文献   

16.
We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon interactions for such a nanosystem exhibits two pronounced resonances and interpret the coupling in terms of Fano resonances. The higher energy resonance is identified as a symmetric hybridization mode between localized plasmon resonances in the island semishell array and surface plasmon polaritons in the metal film and while the lower energy resonance is identified as a corresponding anti-symmetric hybridization mode. Increasing the size of the particle arrays enhances and red shifts the resonances. We show that adding a dielectric spacer between the semishell island array and the metal film results in a red shifting of the resonances and introduce an additional high energy spectral peak. The effect of the spacer layer is interpreted as a reduced hybridization and the generation of additional localized surface plasmon resonances.  相似文献   

17.
In this paper, optical properties of multilayer spherical core-shell nanoparticles based on quasi-static approach and plasmon hybridization theory are investigated. Calculations show that light absorption spectrum of bimetallic multilayer core-shell has three intense plasmon resonance peaks, which are more suitable for multiplex biosensing based on surface-enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR). The plasmon resonance peaks in bimetal nanshells are optimized by tuning the geometrical parameters. In addition, the optimal geometry is discussed to obtain the Raman enhancement factor in bimetallic multilayer nanoshell. SERS enhancement factor is calculated with consideration of dampings due to both the electron scattering and the radiation at the boundary and modified Drude model in dielectric function of bimetallic nanoshell. It is shown that bimetallic nanoshell with the small size exhibits strong SERS enhancement factor (~6.63 × 105) with additional collision dampings and ~2.9 × 109 with modified Drude model which are suitable for biosensing applications. In addition, any variation in blood concentration and oxygen level can be detected by this bimetallic core-shell nanoparticle with sensitivity of Δλn = 264.91 nm/RIU.  相似文献   

18.
We propose a near-infrared super resolution near field imaging system with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near field components of dipole sources and the super resolution images can be reconstructed in the output plane. By decreasing the metallic nanoshell’s thickness of the fixed size nanoparticle, the plasmon resonance wavelength of the isolate nanoshell particle is red-shifted to the near-infrared region. The operation wavelength of the imaging array is correspondingly red-shifted to the near-infrared region. In this paper, we study the incoherent and coherent super resolution imaging. The field intensity distributions at the different planes of imaging process are calculated using the finite element method. The simulation results demonstrate that the array has super resolution imaging capability at near-infrared wavelengths in the incoherent and coherent manners. The results also show that the image formation highly depends on the source coherence. In the same structural parameters, the reconstructed images under the illumination of incoherent light source reach to the higher image quality and spatial resolution than the images under the illumination of coherent light source of in phase. By reasonably designing parameters of the imaging array, the approximate spatial resolutions of λ/13 in incoherent case and λ/10 in coherent case are obtained at the near-infrared wavelength of 764 nm. Furthermore, the image–array distance and the chains’ spacing also affect the image reconstruction.  相似文献   

19.
Surface plasmon resonances on bilayer aluminum nanowire gratings are studied in both theory and experiment. It is found that there are two kinds of surface plasmon on the bilayer metallic gating: longitudinal aluminum/dielectric/aluminum slit and lateral aluminum/dielectric interface waveguide mode. The surface plasmon waveguide mode resonance in the slits makes the grating act as a transverse magnetic (TM)-passing polarizer. With the lateral waveguide mode resonance, certain wavelengths of the incident TM light are translated to aluminum/air or aluminum/substrate waveguide light, and the grating acts as a color filter. With both resonances, the bilayer nanowire grating can be a compact-integrated polarizer and color filter.  相似文献   

20.
We numerically investigate the buried effects of surface plasmon resonance (SPR) modes for the periodic silver-shell nanopearl dimer (PSSND) array and their solid counterparts with different buried depths in a silica substrate by means of finite element method with three-dimensional calculations. The investigated PSSND array is an important novel geometry for plasmonic metal nanoparticles (MNPs), combining the highly attractive nanoscale optical properties of both metallic nanoshell and cylindrical pore filled with a dielectric. Numerical results for SPR modes corresponding to the effects of different illumination wavelengths, absorption spectra, pore–dielectric, electric field components and total field distribution, charge density distribution, and the model of the induced local field or an applied field of the PSSND array are reported as well. It can be found that the buried MNPs with cylindrical pore filled with a dielectric in a substrate exhibit tunable SPR modes corresponding to the bonding and antibonding modes that are not observed for their solid counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号